Virtualisation du materiel

Principes de fonctionnement et implémentation par
Qemu/KVM

Comment partager un systeme ?

Le besoin

e Eviter d’avoir a dédier chaque serveur a une unique application

o Gachis de ressources
o Manque de flexibilité

e Une machine doit pouvoir étre partagée

o Par plusieurs applications
o Par plusieurs utilisateurs
o Par plusieurs organisations

e Partager les ressources du systeme

o Sans contraintes ou pré-requis pour les applications
o En assurant la confidentialite des données

o

Comment partager un systéeme ?

Problématique

e Interfaces classiques des systemes d’exploitation
o Solutions au cas par cas necessitant
= Un administrateur systeme définissant une politique d’utilisation
= Des applications capables de prendre en compte cette politique

This app has been blocked by your system
administrator.

Contact your system administrator for more info.

Comment partager un systeme ?

ldentifiants de fichiers

e Toutes les applications voient les mémes fichiers

o [etc/monapp.cfg
o [var/log/monapp.log
o [var/run/monapp/...

e Chaque instance d’une application a besoin de ses propres données

o => Définition d’utilisateurs, chemins et droits d’acces par 'administrateur

o => Configuration spécifique de chaque instance application pour prendre en
compte ’'arborescence définie

o =>Peut nécessiter une recompilation

e Le systeme ne fournit pas forcément les dépendances necessaires

o Versions de bibliotheques et supports executifs
= =>Installation manuelle des dépendances dans des réepertoires dedies
= => Sans profiter du gestionnaire de paquets
= => Relocalisation pas toujours aisée

Comment partager un systeme ?

|dentifiants reseaux

o Toutes les applications voient les mémes identifiants réseaux
o Interfaces, adresses, ports
e Comment attribuer un port réseau a chaque application ?

o Ports standardisés pour chaque protocole applicatif (ex: HTTP=80)
= => Configuration spécifique de I’application pour chaque serveur

e Comment filtrer les acces aux différents ports ?

o =>Définition de regles de filtrage par 'administrateur (ex: iptables)

Comment partager un systeme ?

Ressources matérielles

e Lesressources matérielles sont pilotées par un unique OS
e Chaque application a acces a I’ensemble des ressources

o =>Politques de partage des ressources (resource limits, cgroups)

Processus

e Chaque application voit ’ensemble de I’activité du systeme
o => Politiques de sécurité avancées (ex: selinux)

6

Comment partager un systeme ?

Gestion des privileges

e Un seul utilisateur root
e Politiques definies de facon centralisée par ’administrateur

o Doit maitriser I’ensemble des usages de la machine
o Trouver une solution a chaque problématique
o Garantir la securité des utilisations

e Travail tres complexe
e Ralentit le déploiement des machines

KEEP
CALM

AND

CALL A
SYSADMIN

Comment partager un systéeme ?

Une nécessité apparue des les premiers ordinateurs

e Machines tres coliteuse partagées par une ou plusieurs institutions
o Nombreux utilisateurs
e Premiers systemes d’exploitation sont mono-taches
o Exécution un par un des programmes
o Impossibilité de travailler de facon interactive
= Monopoliserait 'ensemble du systeme pour un utilisateur

Comment partager un systeme ?

Vers des systémes multi-utilisateurs a temps partage

e CTSS: Compatible Time Sharing System (1961)

o Premier prototype développé au MIT

o Processeur specialement modifie par IBM

o Démontre 'intérét de pouvoir partager systeme
= Consoles interactives

e Nombreux projets visant a déevelopper un OS complet

o Mettra longtemps a aboutir du fait de la difficulté
= TSS est abandonne
= Multics subira de nombreux retards
= Pose les base pour un systeme plus simple: Unix

“...overdesigned and overbuilt and over everything. It was close to unusable” K.
Thompson

Comment partager un systeme ?

L3 virtualisation: une solution globale au partage de systéme

e CP/CMS (1968)
o Un des premiers OS multi-utilisateur a temps partagé fonctionnel
o Décomposition en deux sous-problemes plus simples
o CP: Control Program

= Multiplexe la machine en plusieurs machines indépendants

= L’interface proposée a chaque utilisateur de la machine est I’interface
de la machine compléte

» Equivalent d’une machine virtuelle (appelé pseudo-machine)

o CMS: Cambdrige monitor system

= Systeme d’exploitation mono-utilisateur simple
= Pilote les systemes virtuels gereés par CP

Définitions

Terminologie

e Virtualisation: Permet de créer des versions virtuelles d’un matériel réel

e Machine virtuelle (VM) : Version virtuelle de ’ensemble composants d’une
machine physique

o Processeur, memoire, périphériques ...
e Hyperviseur: Logiciel en charge du fonctionnement des machines virtuelles

o Arbitre ’acces aux ressources physique
o Aussi appelé VMM (Virtual Machine Monitor)

e Hote: Machine physique hebergeant des machines virtuelles

o Invité: Machine virtuelle hébergée sur une machine physique

11

File Emulation Input Sound Video Cheat Metplay Help

Définitions R ——

g2 i

Virtualisation, eémulation et simulation

e Emulation: reproduire le comportement d’un systéme

o Systéme émulé indépendant du systéeme physique
= EX: console de jeu sur un PC x86

o Compromis performance/fidélite possibles
= Reproduire le résultat, pas le mode de fonctionnement
= Différence avec la simulation

e Virtualisation: multiplexage et/ou partitionnement d’'un systeme

o Systéme virtuel proche du systeme physique
= Jeu d’instruction, type de péripheriques ...

o Multiplexer et/ou partitionner sans perdre de performance

o Tous les composants ne peuvent étre virtualisés efficacement
= Une partie des composants d’'une VM sont emules

12

Virtualisation

Définition selon Popek et Golberg

e Propriétes caractérisant un systeme de virtualisation

o Efficacité

= La majorité des instructions soumises dans un invité sont exécutes
directement sur I’hote

o Controle des ressources
= [’hyperviseur reste maitre de toutes les ressources physiques

o Equivalence
= Un programme exeécute dans un invite se comporte comme sur ’hote

Virtualisation

Défiintion de Popek et Golberg

e Methode de déprivilégisation (trap and emulate)
o Exécution directe de la quasi-totalité des instructions du processeur virtuel
o Exécution dans le mode le moins privilégie du processeur physique
o Interruption logicielle (trap) cas d’utilisation d’instruction privilégiée
o L’hyperviseur reprend la main
o Emulation du comportement attendu de linstruction fautive

rngs

3 Process 1 Process 1 Kernel Process 1
syscall . syscall i/o sysexit >
N . - - Dr ______ R T

trap
S S N I N | e
i/o sysexit L_/‘r \%ﬁ L_/j
0 “Kernel Hypetvisor
v v

14

Virtualisation

(ritéres de Popek et Golberg

Criteres indiquant si une architecture est virtualisable (permet de construire un
hyperviseur basé sur la déprivilégisation)

1. Les instructions non-privilégiées doivent avoir la méme forme quel que soit le
niveau de privilege courant

2. L’acces a la memoire doit pouvoir étre restreint en mode non privilegié

3. Toute instruction sensible doit étre privilégiée (déclencher une interruption en
mode non privilégie)

o a) acces au niveau de privilege courant

o b) acces aux registres sensibles (ex: vecteurs d’interruption)
o C) acces aux mecanismes d’isolation mémoire

o d) entrees/sorties

15

Virtualisation du jeu d'instruction x86

Non-conformite du x86

e Fchecs silencieux

o Exemple: POPF (échoue au critere 3b)
= Controle entre autre le masquage des interruptions (EFLAGS)
= Jgnore sile niveau de privilege est insuffisant

e [ectures d’informations incorrectes

o Exemples: MOV (échoue au critere 3a)
= Permet de lire le contenu du registre CS
= Contient le niveau de privilege courantau
= Lecture du mauvais niveau de privileges

16

Virtualisation du jeu d'instruction x86

Emulation efficace vImware

e Popularise par VMWare
e Emulation de I’0S invité uniquement
e Traduction binaire et caches de traduction
o Analyser chaque instruction une par une serait trop lent
o Traduction de blocs d’instruction sans branchements
o Instructions modifiées:
= Références mémoire, branchement dynamiques
= Instructions sensibles

4 N\ /)
Exécution d'unbloc | | > Bloc
en cache traduit
Emulation d'une N .1 Bloc y USSR I > Traductlongz: un
instrution privilégiée T[T 2 traduit Bloc , nouveau bloc
traduit :
Bloc
\ traduit Traducteur
y A
Bloc
Branchement T P iy traduit o
dynamique il e oc
Y we T P traduit

S Emulateur) _ Cache de traduction)

Virtualisation du jeu d'instruction x86

Para-virtualisation du processeur
Xen

e Popularise par ’hyperviseur Xen

o Processeur virtuel 1égerement différent d’'un processeur x86
= Non-support des instructions problématiques

o Le syteme d’exploitation de la VM sait qu’il est virtualisé

o Coopération avec I’hypervieur
= Fonctionnalités exposees via hypercall

e Ne fonctionne qu’avec des systemes d’exploitation modifiés

e Nécessite un support de la segmentation pour étre vraiment performant
o Pas disponible en x86_64

18

Virtualisation du jeu d'instruction x86

Extensions du jeu d'instruction x86

e Introduites par AMD et Intel face a la demande croissante de virtualisation

o AMD: SVM /| AMD-V
o Intel: VT-x

e Extensions aux principes similaires:

o Permettre 'utilisation du trap and emulate

o Modes d’execution orthogonaux aux niveaux de privileges du x86
= root: mode privilegié pour I’hote
= non-root: mode déprivilégié pour les invites

o Tous les niveaux de privileges x86 sont accessibles dans chaque mode
= Limite le nombre de transitions VM / VMM

Virtualisation du jeu d'instruction x86

Fonctionnement de VT-x

e Transitions root / non-root
o Appel de VMLAUNCH/VMRESUME par I’hyperviseur
= Declenche une VMENTRY: bascule en mode non-root
= Restauration de I’état du processeur virtuel
o Conditions déclenchant un VMEXIT
= Retour en mode root
= Restauration de I’état du processeur hote

Mode Root Mode Non-Root
e _ ™ e] ™
Ring3 Ring3
e N ™ T
Processu Processu P
L héte JAN héte) VMLAUNCH/VMRESUME | invité
N\ J N\ J
- : ~N () 4 .
Ring0 Ring0
VMEXIT
(Trap, Interruption, Faute, ...)
Noyau hote Noyau invité

20

Virtualisation du jeu d'instruction x86

Fonctionnement de VT-x

e Structure VMCS (VM Control Structure)
o Controle des transistions root / non-root
e Contient notamment;

o Etat du processeur a restaurer lors de la prochaine transition
= VMENTRY: sauvegarde de I’état hote et restauration de I’état invite
= VMEXIT: sauvegarde de I’état invité et restauration de I’état hote
o Configuration des conditions déclenchant un VMEXIT
= [nstructions a intercepter
= Défaut de pages
= Interruptions materielles ...
o Cause de la derniere sortie du mode invité
= Simplifie le travail de ’hyperviseur

Virtualisation de la mémoire

Unité de gestion de mémoire (MMU) x86

e Hors des phases d’intialisation: mode protege / long
e Les instructions assembleur manipulent des adresses logiques
o Aussi appelé adresses virtuelles

= hVA: host virtual address, gVA: guest virtual address

o Pointe vers des zones mémoires physiques

= hPA: host physical address, gPA: guest physical address

(, N
Ring3
e N S
Mémoire virtuelle Mémoire virtuelle
(hVA) (hVA)
Processus .Processus
\- N .)
- ~
(L , \
. Ring0
Mémoire - RNY i
physique N | N SN
hote
(hPA) ~ =
A N
L Noyau hote -

Mémoire
physique
invité

4 . 2\
Ring3
Y
Mémoire virtuelle
(gVA)
Proéeséus
invjté
i
- 4
4 . N\
Ring0

I

\
\
\

\

\

\
\

’

(gPA)

_~Noyau invité

————————————

17

F, F;

Virtualisation de la mémoire

Unité de gestion de mémoire (MMU) x86

o Table des pages (TDP)

o Correspondance avec les adresses physiques
e TLB: Translation Lookaside buffer

o Cout du parcours hierarchique de la TDP (4 accés memoire)
o Cache du résultat des precedents parcours

47 40|39 32|31 24|23 16|15 8|7

9 Page L4 9 9 9 12
Page L3
Page L2
Page L1
hPA @
hPA @1
hPA @
hPA @
Registre
—® CR3

DIy 2410w abed

Virtualisation de la mémoire

Table des pages fantomes

e La VM dispose de mémoire physique virtuelle (gPA)

o Lestables des pages qu’elle met en place sont virtuelles
o Traduction gVA -> gPA
o Jamais utilisée directement par la MMU physique

-’?-Systéme d'exploitation

invité (\
Adresse physique [
de l'invité
Registre CR3
physique
hote Adresse physique
de /"invité J

> Adresse physique
de l'invité

1

Virtualisation de la mémoire

Table des pages fantomes

e Le VMM maintient en cohérence une table des pages fantome

o Installée sur le processeur quand la VM s’exécute
o Contient la traduction gVA -> hPA
o Calculé par la composition gVA -> gPA et gPA -> hPA

"Systéme d'exploitation

invite (\
' _ |
1
I il it >
1 —
¥ : Adresse'physjque
Adresse virtuelle : de l'invité
de lnvite Registre CR3
—> physique =
hote Adresse physique
de I"invité /

» Adresse physique
de l'invité

I

Virtualisation de la mémoire

Table des pages fantomes

e Le VMM maintient en cohérence une table des pages fantome

o Installée sur le processeur quand la VM s’exécute
o Contient la traduction gVA -> hPA
o Calculé par la composition gVA -> gPA et gPA -> hPA

"Systéme d'exploitation

)(invite (\
: |
: - Xf--o- o]
; : Adresse'physjque]
Adresse virtuelle ' de l'invité
ae ['invite Registre CR3
—> physique =
hote Adresse physique
de I"invité /

» Adresse physique
de l'invité

I

26

Virtualisation de la mémoire

Table des pages fantomes

e Le VMM maintient en cohérence une table des pages fantome
o Installée sur le processeur quand la VM s’exécute
o Contient la traduction gVA -> hPA
o Calculé par la composition gVA -> gPA et gPA -> hPA

"Systéme d'exploitation)
invité e

1
1
! F-Xp----- >
; : Adresse'physjque [» Adresse'physjque
Adresse virtuelle : de l'invité de l'invité
de invité Registre CR3
—> physique =
hote Adresse physique
le I"'invité

~

J

—y Adresse physique
de I'héte

/

I

Virtualisation de la mémoire

Table des pages fantomes

e Mise en cache des table des pages fantomes

e Interception des modifications de la TDP virtuelle

o Protection en ecriture des pages de la TDP virtuelle

= Complexe: trouver les entrées permettant d’ecrire dans ces pages
= Heuristiques de détection de changement d’utilisation des pages

» Evaluation paresseuse en cas de modification multiples

P Xp----- >

Adresse virtuelle
de l'invité Registre CR3
— physique

"Systéme d'exploitation
invité

Ve

\

Adresse

hote

|

» Adresse physique
de l'invité

I

—y Adresse physique
de I'héte

/

I

Virtualisation de la mémoire

Table des pages imbriquées

e Extensions matérielles introduites par AMD et Intel
o Ameéliorer les performances
o Passage al’échelle (nombre de CPUs virtuels)
o Simplifier les hyperviseurs
m Sécurite

Virtualisation de la mémoire

Table des pages imbriquées

e Le processeur parcourt deux niveaux de table des pages
o CR3 invité: table des pages gVA -> gPA
= Utilisable par I’OS invite sans trap

o EPTP: table des pages gPA -> hPA (spécifié via VMCS)

47 40|39 32|31 24|23 16|15 8

7
L L n 1 Il [] Ve '
Adresse virtuelle/de I'invité (gVA)
47 40|39 32|31 2423 16|15 8|7 0
Adresse physique de l'invité (gPA)
9 page L4 9 9 9 12
Page L3 9 9 9 9 12
Page L2 Page L4 page 13
Page L1 . Page L2
. o Page L1
Q o
Q = o]
: = = :
gPA @ @ hPA @ - - : §
(&
9PA @ e hPA 2.
gPA @ ® i hPA @ °
- _ gPA @ N : . &
- e A > :)
- . . Registre .
Registre - - . ® EPTP
Y CR3/ > -
inviteé Ly

30

Virtualisation de la mémoire

Table des pages imbriquées

e La TLB cache les traductions gVA -> hPA
e Probleme: colt des défauts de TLB
e Calculerle nombre d’acces mémoires nécessaires a une traduction

47 40(39 32|31 24(23 16|15 8|7 0
L " 1 m L] /7 {
Adresse virtuelle/de I'invité (gVA)
47 40|39 32|31 2423 16|15 8|7
Adresse physique de l'invité (gPA)
9 Page L4 9 9 9 12
Page L3 9 9 9 9
Page L2 Page L4 rage L5
Page L1 . Page L2
-) Page L1

Q
LQ -
o) : .
3 : .

gPA @+ o) hPA @+ -

gPA e@- g hPA e
=3 hPA @
gPA @ =) hPA @
: . gPA @& & : .
- > é > c .
- . . Registre .
Registre - - . ® EPTP
Y C R3/ > -
inviteé Ly

DIy as0waw abed

Virtualisation de la mémoire

Table des pages imbriquées

e 24 acces memoire au total !
o Sila TDP est assez statique les TDP fantomes sont plus efficaces
o Les TDP imbriquées sont plus performantes dans la plupart des cas
m Utilisées en standard sur les processeurs récents

47 40(39 32|31 24(23 16|15 8|7 0
L L n 1 Il [] Ve '
Adresse virtuelle/de I'invité (gVA)
47 40|39 32|31 2423 16|15 8|7
Adresse physique de l'invité (gPA)
9 Page L4 9 9 9 12
Page L3 9 9 9 9
Page L2 Page L4 rage L5
Page L1 . Page L2
-) Page L1

Q
LQ -
o) : .
3 : .

gPA @+ o) hPA @ -

gPA e@- g hPA e
=3 hPA @
gPA @ =) hPA @
-) gPA @ N : .
- > é > c .
- . . Registre .
Registre - - . ® EPTP
Y C R3/ > -
inviteé Ly

DIy as0waw abed

|

Le module KVM .‘;QV.KV M

e Module noyau Linux permettant d’'implémenter un hyperviseur

o Expose élégamment les fonctionnalités de virtualisation

m Processeur et mémoire
= Controleur d’interruption

o Les VMs sont des processus Unix standards

= Meémoire allouée par le processus
= Un thread par CPU virtuel (vCPU)
= E/S via les interfaces standard fournies par le noyau

o Intégration parfaite dans ’ensemble du systeme

= Ordonnancement standard
= Outils Unix ps, top, nice, kill ...
= Cgroups

bl
b

-

-

Le module KVM

Vlue d’ensemble du fonctionnement

Espace utilisateur
hote

Basculement en contexte invité

Contexte invité

Processus en esp. utilisateur
émulateur de périphériques

A

d[ero13o uondnarauy

= %
& o
2 2
¢ =
w 2
< =

=
< \ P

!
Noyau Linux hote
——

Module KVM

Le module KVM

Mise en place de [a mémoire d'une VM

/*0uverture de l'interface kvm et création d'une VM*/

kvm = open("/dev/kvm", 0O RDWR | O CLOEXEC);

vmfd = ioctl(kvm, KVM CREATE VM, (unsigned long)0);

/*Alloue de la mémoire avec l'appel systeme mmap*/

mem = mmap(NULL, 0x1000000, PROT READ | PROT WRITE, MAP SHARED | MAP ANONYMOUS
/*Positionne cette mémoire a l'adresse physique virtuelle 0x1000*/
struct kvm userspace memory region region = {

.slot = 0O,

.guest phys addr = 0x1000,

.memory size = 0x1000000,

.userspace addr = (uint64_t)mem,

¥

ioctl(vmfd, KVM SET USER MEMORY REGION, ®ion);

35

Le module KVM

Lancement de la VM

/*Création d'un vCPU*/
vcpu fd = ioctl(vmfd, KVM CREATE VCPU, (unsigned long)0);
vcpu ctx = mmap(NULL, vcpu size, PROT READ | PROT WRITE, MAP SHARED, vcpufd, 0);
[...] /* Configuration de l'etat du vCPU (registres...) */
while (1) {
/*Exécution de la machine virtuelle*/
ioctl(vcpufd, KVM RUN, NULL);
/*Analyse de la cause du VMEXIT*/
switch (vcpu ctx->exit reason) {
case KVM EXIT IO:
/* Traitement de 1'E/S */

36

Jemu QRemMmu

Présentation

e Emulateur open source trés versatile

o Principaux jeux d’instructions
= Traduction binaire
o Tres grand nombres de péripheériques

e Exploite KVM pour former des machines virtuelles

o KVM virtualise le CPU et la mémoire
o Qemu émule les autres composants

Jemu QRemMmu

Architecture

- g3)
4 N Ring3
- Main loop N (VCPU #0 N VCPU #1 A
- Travail déferré - Execution Invité - Execution Invité
- Callbacks (KVM) (KVM)
- Evénements I/O - Emulation - Emulation
- Timers périphérique périphérique
- Ul synchrone synchrone

_ Thread VAN Thread VRN Thread)

\ Processus Qemu

Y
Ring0)

\
- Y
Module Pilotes de ord Gestionnaire
KVM Périphériques rdonnanceur mémoire

L Noyau Linux hote

0y
38

Emulation d'un périphérique (frontend)

0 ’ , 0 ’ 0
Programmation d'un périphérique PC| >
o Periphériques PCI(-Express), plateforme x86 EXPRESS
e Un périphérique expose son interface via des registres
e Deux mecanisemes permettent d’y acceder
o I/O ports
= Mecanisme historique
= Acces via 65536 adresses de ports

o Memory Mapped I/O (MMIO)
m Acces via des adresses mémoire

= Instructions IN/OUT >rocesseur ﬁ: \

= Instructions MOV Mémoire | _ .
o Comment savoir: physique |~ [l
o Quels périphériques sont présents ? ‘ T Trreentt

) . * ‘____—’: -~ \\\
o A quelle adresse sont-ils accessibles ? C . .

39

Emulation d'un périphérique (frontend)

Espace de configuration PC

o Registres de configuration exposes par chaque péripheérique
o Structure standardisee
= Vendor et Device ID
o Base Address Registers (BARSs)
= Configuration des adresses associées a une ressource
= Adresses memoire ou I/O ports

31 1615 0

Device ID Vendor ID 00h Processeur
Status Command 04h
Class Code Revision ID | 08h
BIST Header Type | Lat. Timer |Cache Line S.|0Ch
10h ; .

Lan Mem_0|re

18h physique
Base Address Registers 1ch
20h
24h
Cardbus CIS Pointer 28h
Subsystem ID Subsystem Vendor ID 2Ch
Expansion ROM Base Address 30h
Reserved Cap. Pointer | 34h
Reserved 38h

Max Lat. Min Gnt. Interrupt Pin |Interrupt Line| 3Ch

Emulation d'un périphérique (frontend)

Découverte des périphériques

e Chaque periphérique PCI est identifie par
o Numeéro de bus: 8 bits
o Numeéro de périphérique (dipositif physique): 5 bits
o Numeéro de fonction (dispositif logique): 3 bits

Bus

Périphérique
l * Fonction

—— BARs

41

Emulation d'un périphérique (frontend)

Découverte des périphériques

e Acces al’espace de configuration d’'un périphérique via son identifiant

o Acces MMIO a une adresse fournie par le firmware

o Acces historique par deux I/O ports specifiques
= Un port d’adresses et un port de données

Bus N

MMCFG

MMCFG BASE —_»

Bus 1

Périph. 31 Func. 7

Bus 2

Bus O

31

1615

Class Code

BIST

Header Type

Lat. Timer |Cache Line S.

Périph. 0 Func. 3

Périph. 0 Func. 2

Périph. 0 Func. 1

Périph. 0 Func. 0

Base Addres

s Registers

Cardbus CIS Pointer

Subsystem ID

Subsystem Vendor ID

Expansion ROM Base Address

Reserved

| Cap. Pointer

Reserve

d

Max Lat.

Min Gnt.

Interrupt Pin |Interrupt Line

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

42

Emulation d'un périphérique (frontend)

Transferts de données

e Direct Memory Access
o Le periphérique lit/ecrit directement dans la mémoire du systeme.
o Exemple: paquets réseaux, blocs disques

Mémoire
physique

Emulation d'un périphérique (frontend)

Transferts de données

e Direct Memory Access
o Le periphérique lit/ecrit directement dans la mémoire du systeme.
o Exemple: paquets réseaux, blocs disques

Mémoire
physique

Paquets A4
Fthernet

Emulation d'un périphérique (frontend)

Transferts de données

e Direct Memory Access
o Le periphérique lit/ecrit directement dans la mémoire du systeme.
o Exemple: paquets réseaux, blocs disques

Mémoire
physique

Paquets

Emulation d'un périphérique (frontend)

Transferts de données

e Direct Memory Access
o Le periphérique lit/ecrit directement dans la mémoire du systeme.
o Exemple: paquets réseaux, blocs disques

Mémoire
physique

Paquets 46

Emulation d'un périphérique (frontend)

Transferts de données

e Direct Memory Access
o Le periphérique lit/ecrit directement dans la mémoire du systeme.
o Exemple: paquets réseaux, blocs disques

Mémoire
physique

47

Emulation d'un périphérique (frontend)

Notifications

e Processeur -> Periphérique : modification de registres (acces MMIO)
e Periphérique -> Processeur: interruptions
o Eviter l’attente active (polling)
o Vecteurs d’interruption (256 sur plateforme intel) associés a des fontcions
= Choix du vecteur utilisé via le config space du periphérique
= Interruption du processeur pour executer la fonction

(Pilote Eth t 6. Prise en compte)
tlote Etherne de I'envoi du paquet ng()
1. Ecriture d'un paquet 2. Notification
en mémoire (Ecriture
registre MMIO
\ Y
Mémoire c
physique
. — =
N NPT L Contréleur
|:| 3. Lecture DMA ﬁ d'interruptions
5. Notification du succeés de I'envoi
(Interruption)
4. Envoi du paquet Noyau h6te
_ réseau)

!
]

Emulation d'un périphérique (frontend)

Emulation des accés aux registres (MMIO)

e KVM

o VMEXIT (pas d’adresse hPA correspondante)

o Analyse de ’exception, émulation de 'instruction (adresse lue/écrite, EIP)
e Qemu

o Emulation du périphérique, renvoie la valeur lue

4 .) 4 .)
Ring3 Ring3
/PI’OCESSUS Mémoire allouée pourla VM \ (\
Qemu l Mémoire virtuelle
(9VA)
Em\l\.ilgté‘yr]
@ Wi
Périphérique virtuel Processus
\ A / invité
g J . J
(\ i N (Pilote Ethernet i h
Ring0 Ring0
3 KM = = Il
_ j B N
héte (hPA) Tt Ra §-q I_e_n_t_r_e_e_ _E_Fi-[- T mémoire physique Périphérique virtuel

Noyau hote)

.

invité (gPA)

Noyau invité)

49

Emulation d'un périphérique (frontend)

Emulation des accés DMA

e Qemu accede directement a la mémoire physique de la VM
o Memoire allouée en espace utilisateur hote

4 .) 4 .)
Ring3 Ring3
/PI"OCESSUS Mémoire allouée pour la VM \ (\
Qemu l Mémoire virtuelle
_ (gVA)
(Lethm:; glrrtelgle en]
mémoire)
Emulateur
@ Processus
_ Périphérique virtuel Y, invité
- J . J
(RlngO A Pilote Ethernet RlngO A
: kv Wl
0 @
héte (hPA) Mémoire physique Périphérique virtuel
invité (gPA)
L Noyau hote Noyau invité

J

50

Emulation d'un périphérique (frontend)

Emulation des interruptions

e [’API KVM permet d’injecter des iterruptions (via un ioctl ou irqfd)
e Modifie le controleur d’interruption virtuel du vCPU cible
o Sibesoin, envoi IPI physique pour sortir le CPU du mode invite
e Modification VMCS
o Sélection d’un vecteur d’interruption: executé au VMENTRY suivant

4 .) 4 .)
Ring3 Ring3
/PI"OCESSUS Mémoire allouée pour la VM \ (\
Qemu l Mémoire virtuelle
(9VA)
Emulateur]
& i Processus
_ Peripher\‘que virtuel Y, / invite
\§ \ J _ J
(injecti YT . A
1. injection ’RO\‘ RlngO Pilote Ethernet RlngO
| 4. Traitement de
ﬁ (2. VMEXIT) l'interruption
3 ControleurIRQ — Wl
S ——— 2. may vmes | a8
héte (hPA) Mémoire physique Périphérique virtuel
invité (gPA)
L Noyau hote)L Noyau invité)

Emulation d'un périphérique (backend)

Périphériques réseau Ethernet

e Backend réseau utilisateur
o Pile TCP/IP en espace utilisateur
o Interprete les paquets Ethernet dans le processus Qemu
o Connexion aux machines distantes via sockets udp/tcp

s Tl
'(SLIRP)

Guest
Operating System

Virtual
Network
Device

10.0.2.15

Gateway DNS SMB (optional)

Host network

o

Emulation d'un périphérique (backend)

Périphériques réseau Ethernet

e Backend TUN/TAP
o Relal les paquets sur un switch virtuel
o Connexion du switch a un réseau phyisque ou un routeur NAT

HOST
: 'VMO ;
! ethQ <----»= tapO
I Tig— \ ;
 : ethQ ----+ tapl brO |+—= NAT [=— ethl «-i----
VM2 —— ;
ethQ «----»~ tap2
‘-.I._ --------------------- I .

Emulation d'un périphérique (backend)

Périphériques de stockage bloc (disques virtuels)

e Nombreux backends disponibles
o Systeme de fichiers local (ext4, xfs, ...)
o Systeme de distant (nfs, glusterfs, lustre, ...)
o Periphérique bloc local (disque physique, lvim, ...)
o Periphérique bloc distant (ceph, iscsi, ...)

Emulation d'un périphérique (backend)

Format de fichiers d'image bloc

e raw: stockage des données brutes

e gqcow2: Qemu Copy on Write

o Fichiers de références
o Snapshots internes
o Allocation granulaire (thin provisionning)
o Compression
guest X
/1 1 S S
g L2
[U
YV \4
host | H |L2 L2|RB| |[RB

1 111112 10 RB

Emulation d'un périphérique (backend)

Politique de gestion du cache

e cache=writeback:

o Qemu ouvre et écrit dans les fichiers de destination normalement
= Les données passent par le cache d’I/O hote

o Grande quantite de données en vol
= Dans le cache d’I/O mais pas encore sur disque

o Le systeme de fichier invité doit gerer correctement les commandes flush
= Corruption assurée en cas de crash dans le cas contraire

o Doublon des caches d’I/O héte et invité
= Consommation et copies mémoires souvent inutile
= Peut permettre un partage entre plusieurs VMs

56

Emulation d'un périphérique (backend)

Politique de gestion du cache

e cache=none:
o Qemu utilise le flag O_DIRECT pour I’écriture des données
= N’utilise pas le cache d’I/O hote
o Laressource sous-jacente peut avoir un cache interne
= [’invité doit correctement envoyer des commandes flush
o Pas compatible avec tous systemes de fichiers hote
o Fonctionnement le plus proche d’un periphérique physique
o Généralement plus performant avec du matériel haut de gamme

Emulation d'un périphérique (backend)

Politique de gestion du cache

e cache=writethrough:
o Qemu utilise le flag O_DSYNC pour I’écriture des données
= Une ecriture rend la main quand les données sont sur disque
= Le cache de page est peuple en lecture
o Evite au maximum les possibilités de corruption de données
= [’invité n’a pas besoin d’envoyer de commande flush
o Pénalise les performances

-
] 4':"_1

Emulation d'un périphérique (backend)

Politique de gestion du cache

e cache=unsafe:
o Qemu ouvre et écrit dans les fichiers de destination normalement
o Toutes les demandes de flush sont ignoreées
o Maximise les performances si on ne craint pas les pertes de donnees
= VM éphémere
= Phase d’installation d’'une VM

Paravirtualisation d'un périphérique

Problématique des interfaces de périphériques

e Interfaces non congues pour une emulation efficace
e Caractéristiques de performances des mécanismes virtuels et physiques

o Registres

= Physique: Rapide et simple

= Emulation: Accés MMIO tres lent (vmexit, décodage, ...)
o Transfert DMA

= Physique: Plus complexe

= Emulation: Simple et rapide (accés mémoire direct)
o Interruptions:

= Physique: Couteux

» Emulation: Trés coliteux (multiples vmexit)

e Exemple: interface réseau Ethernet e1000

o 6 acces registres par paquet envoye
o 1interruption

60

Paravirtualisation d'un périphérique

Interfaces paravirtualisées

e Periphériques purement virtuels

o Aucune version physique des periphériques n’existe
e Concu pour une virtualisation efficace

o Prise en compte des performances des mécanismes de communication
e Inconvenient

o Neécessite des drivers spécifiques dans I’OS invité

= Pour chaque classe de péripheriques (réseau, stockage bloc, ...)
= Pour chaque hyperviseur

61

Paravirtualisation d'un périphérique
Bus Virtl0

e Bus de communication standardisé pour interfaces para-virtualisees
e Découple les problématiques

o Implémentation de chaque périphérique a I’aide de ce bus

o Implémentation du bus par chaque hyperviseur
e Bénéfices

o M+ Ndrivers aulieude M * N

o Mecanismes communs a toutes les classes de péripheriques

Pilote VirtlO Pilote VirtlO
KVM Iguest

62

Paravirtualisation d'un périphérique
Bus Virtl0

e Virtqueues: files de descripteur de messages
o Allouées dans la memoire de I'invité
o Acces en DMA virtuel par ’hyperviseur

Invité Hote
1- Insertion des tampons‘\
add buf(bufl) : U O o) - <
7 el |a|1E(a12A12 (2]
add buf(buf2) > Slols|a |55 (5|95 g_)| _____
MEHHEHEHE HERE a
cl|l®lc|®P|c|®P|c PP |c|® .
= = = = = =)
buf2 bufl ‘V
2- Notification de I'néte > 3- Li)cture des tampons
kick() . . . pop
hypercall/interruption logicielle 4- Marquage des tampons
traités
push(bufl)
push(buf2)
6- Récupération des 5- Notification de I'invité
tampons traités interruption virtuelle notify()

get buf()

63

Paravirtualisation d'un périphérique
Bus Virtl0

e Minimisation des interruptions et trap au strict nécessaire

o Hyperviseur et invite travaillent en parallele

o Acces registre uniquement pour reveiller un thread hyperviseur

= Consomme tous les descripteurs de la file

= Plus d’acces registre tant que ’hyperviseur est actif

o Symétriquement, interruption uniquement pour reveiller un thread invite

Invité Hote
1- Insertion des tampons‘\
add buf(bufl) : U O o) - <
7 el |a|1E(a12A12 (2]
add buf(buf2) > Slols|a |55 (5|95 g_)| _____
MEHHEHEHE HERE a
cl|l®lc|®P|c|®P|c PP |c|® .
= = = = = =)
buf2 bufl ‘V
2- Notification de I'néte > 3- Li)cture des tampons
kick() . . . pop
hypercall/interruption logicielle 4- Marquage des tampons
traités
push(bufl)
push(buf2)
6- Récupération des 5- Notification de I'invité
tampons traités interruption virtuelle notify()

get buf()

64

Minimisation des changements de contexte

Problématique

e Bascule invite vers espace utilisateur hote tres cotuteuse
e Emulation synchrone dans le thread du vCPU

.

4 . / . R
Ring3 Ring3
/ Mémoire allouée pourla VM \ (\
Processus
Qemu l Mémoi(rgev\;i) eeeeee
Em\ﬁl\at(\é‘;\.lr]
@ i
Périphérique virtuel Processus
b 4 J __fnvité)
\\ J . J
4 Y : N (Pilote Ethernet I h
Ring0 Ring0
" e -
e b T pas dientrée EPT_| ™" e Péﬁphﬁ-virtuel
invité (gPA)
Noyau hote) Noyau invité

J

65

Minimisation des changements de contexte

Interfaces KVM irqfd et ioeventfd

e ioeventfd: descripteur de fichier lié a un registre MMIO
o Evite au thread VCPU de retourner en espace utilisateur hote

o Permet un traitement parallele dans I/O thread dédié a chaque périphérique

e irqfd: descripteur de fichier lié a un vecteur d’interruption

o Permet de déclencher une interruption depuis différents contextes

VCPU thread

VCPU thread

I/O thread

retour ioctl()

MMIO KVM_EXIT_MMIO ioctl(KVM_RUN,...)
\/ \/ \
Exécution VM Retour Qemu Exécution VM
(mode non-root) 200 S espace utilisateur Emulation périphérique S REENIER (mode non-root)
MMIO
\}
Exécution VM Exécution VM
(mode non-root) SR e i lEb R (mode non-root)
notification
ioeventfd

Qemu

Emulation périphérique

66

Minimisation des changements de contexte

vhost

Emulation du périphérique en espace noyau hote

e Equivalent d'un I/O thread en mode noyau
e Adapte a la simplicité d’un périphérique para-virtualisé

retour ioctl()

MMIO KVM_EXIT_MMIO ioctl(KVM_RUN,...)
\/ \ \
Exécution VM Retour Qemu Exécution VM
VCPU thread (mode non-root) RCEA S espace utilisateur Emulation périphérique S REIERIER (mode non-root)
MMIO
\
Exécution VM Exécution VM
VCPU thread (mode non-root) SRR L I lEb I (mode non-root)
' notification
ioeventfd
\

Emulation périphérique
Thread noyau noyau

PCl Passthrough

Principes
e Acces direct dune VM a un périphérique physique

o Pasréellement de la virtualisation
o Assurer I'isolation de la VM
o Permettre au périphérique physique de comprendre les gPA

e Nécessite une IOMMU

o Redirection DMA
= Redirection des adresses DMA accedées par un périphérique
= Mise en place d’'une table gPA -> hPA
= Nécessite de punaiser la mémoire de la VM
o Redirection d’interruption
= Redirection des vecteurs d’interruption déclenchés

PCl Passthrough
VFIO

e Module noyau permettant d’appliquer une IOMMU a un peériphérique

o Utilisé par Qemu
o Configuration d’un adressage cohérent avec celui défini pour KVM

e Acces aux registres via mmap

o Virtualisation du PCI config space
o Acces direct aux autres régions
o Integration a I’espace d’adressage de KVM

e Redirection des interruption dans un eventfd

o Injection dans un irqfd KVM

PCl Passthrough

Posted interrupts

e Supporte par les dernieres générations de CPU
e JOMMU capable de rediriger des interruption vers des CPU virtuels

o Extension du VMCS permettant I'injection d’interruption
o Redirection d’interruption pour intéragir avec ce champ
o Injection de I'interruption sans VMEXIT si le vCPU est actif

70

PCl Passthrough
Single Root 1/0 Virtualization (SR-10V)

e Multiplexage matériel d’'un périphérique en plusieurs fonctions virtuelles (VF)
o Assignation de chaque VF a une VM via PCI Passthrough
e Une fonction physique reste en charge de la configuration de la carte

o Configurations communes
o Gestion des VFs

= Creation / destruction

= Configuration

= Mécanismes d’isolation (exemple: VLANS autorisés)
o Gestion energétique...

e Exemple: Mellanox Infiniband

o Jusqu’a 95 VFs par carte physique sur les cartes récentes
o Possibilite d’assigner de restreindre chaque VF a une liste de PKey
o Performance équivalentes aux performances natives

Migration de VM 3 chaud

Description

e Déplacer une VM d’un hote a ’'autre sans disruption de service
o Les applications restent fonctionnelles
o Les connexions réseaux restent établies
e Applications
o Equilibrage de charge entre hyperviseurs
o Maintenance sur un hyperviseur

Physical server A Physical server B Physical server C

e e e o e)

| I I
| I I
! [VM J[VM J ! :
l I |
| I I
vy Y ym
Virtual | | _—
machine (VM) SRL NI L, Migration
| — g 7 |
| I I
s | I I
VM | VM ! ! VM
monitor l monitor I I monitor
- [| !L f

TR RN L R (A

B

Migration de VM a chaud

Etats a transfeérer

o Ftat des périphériques de stockage

o Potentiellement plusieurs TB
o Utilisation d’un stockage reseau accessible depuis tous les hyperviseurs
o Pas de migration nécessaire

o Ftat des vCPUs et autres périphériques

o Quelques MB: transférés en quelques millisecondes

o Une indisponibilité pendant la durée du transfert est acceptable
= Suffisament court pour étre invisible

o Certains périphériques peuvent étre impossibles a migrer
= PCI-Passthrough

e Ftat de la mémoire

o Quelques (dizaines) de GBs: transférés en quelques (dizaines) de secondes
o Coupure trop longue pour assurer une continuité de service

o Nombreux échecs de type timeout a prevoir

o Doit étre transféree a chaud

Migration de VM a chaud

Pré-copie de la mémoire

e Transfert prealable de la mémoire vers la destination

o Pendant que la VM est active sur la source
= Continue de modifier sa mémoire en parallele
o Ala fin du transfert, les donnees transferees ne sont plus a jour

e Multiples passes de transfert

o Copie des données modifiées depuis le début de la deniere passe
o Arrét selon criteres de convergence (qté de données restante)

e Fin de la migration

o Suspension de la VM sur I’h6te source
o Transfert du reste de la meémoire, etat CPU et périphériques
o Démarrage de la VM sur ’h6te de destination

VM exécutée
sur I'hOte source

VM stoppée

VM exécutée
a destination

Transferts en pré-copie

Copie n°1
100%

Copie n°2
30%

Copie n°3
20%

Copie n°4

10%

Copie reste mémoire
et état CPU/DEV

Migration de VM a chaud

Post-copie de la mémoire

e Désle début de la migration

o Suspension de la VM sur ’h6te source
o Transfert de I’état du CPU et périphériques
o Démarrage de la VM sur ’hdte de destination

e La VM n’a pas acces a sa mémoire intialement

o Acces a une page manquante: défaut de page declenchant un VMEXIT
= Transfert synchrone de la page manquante depuis ’h6te source
o Transfert parallele en tache de fond de toute la mémoire

VM exécutée VM VE exfcutée|a destination VM exécutée
sur I'hote sourced stoppée performancgs dégradées a destination
_ Copie Copie|mémoire
Transferts en post-copie CPU/DEV asyfichrone
AAA A A
T T Défauts de page:

transferts synchrone

Migration de VM a chaud

Comparaison des méthodes de migration

e Durée d’indisponibilité
o Pré-copie: depend du taux d’acces mémoire
o Post-copie: duree courte et previsible

VM exécutée
sur I'hote source

VM stoppée

VM exécutée
a destination

Transferts en pré-copie

Transferts en post-copie

AAA A A T T

Défauts de page:

transferts synchrone

Copie n°1 Copie n°2 Copie n°3 [Copie n°4|Copie reste mémoire
100% 30% 20% 10% et état CPU/DEV
VM exécutée VM VE ex@cutée|a destination VM exécutée
sur I'hote sourcel stoppée performancgs dégradées a destination
Copie Copie|mémoire
CPU/DEV asymnchrone

Migration de VM a chaud

Comparaison des méthodes de migration

e Délai de migration
o Pré-copie: depend du taux d’acces mémoire
o Post-copie: rapide

VM exécutée
sur I'hote source

VM stoppée

VM exécutée
a destination

Transferts en pré-copie

Transferts en post-copie

transferts synchrone

Copie n°1 Copie n°2 Copie n°3 [Copie n°4|Copie reste mémoire
100% 30% 20% 10% et état CPU/DEV
VM exécutée VM VE ex@cutée|a destination VM exécutée
sur I'hote sourcel stoppée performancgs dégradées a destination
Copie Copie{mémoire
CPU/DEV asymnchrone
AAA A A
1 1 Défauts de page:

Migration de VM a chaud

Comparaison des méthodes de migration

e Quantité de données transferee
o Pré-copie: depend du taux d’acces mémoire
o Post-copie: minimal

VM exécutée VM stoppée VM exécutée
sur I'hote source PP a destination
, . Copie n°1 Copie n°2 Copie n°3 [Copie n°4|Copie reste mémoire
Transferts en pre-copie 100% 30% 20% 10% et état CPU/DEV
VM exécutée VM VE ex@cutée|a destination VM exécutée
sur I'hote sourcel stoppée performancgs dégradées a destination
" £ . Copie Copie|mémoire
ransferts en post-copie CPU/DEV asymchrone
AAA A A
1 1 Défauts de page:

transferts synchrone

Migration de VM a chaud

Comparaison des méthodes de migration

e Performances pendant la migration
o Pre-copie: impact modéré
o Post-copie: possibilité de fort ralentissement, nécessite un reseau performant

VM exécutée VM stoppée VM exécutée
sur I'h6te source PP a destination
, . Copie n°1 Copie n°2 Copie n°3 [Copie n°4|Copie reste mémoire
Transferts en pre-copie 100% 30% 20% 10% et état CPU/DEV
VM exécutée VM VE exgcutée|a destination VM exécutée
sur I'hote sourcel stoppée performancgs dégradées a destination
‘ _ Copie Copie|mémoire
Transferts en post-copie CPU/DEV asymchrone
AAA A A
1 1 Défauts de page:

transferts synchrone

[

Libvirt

e Bibliotheque de gestion de la virtualisation
o Supporte les principaux hyperviseurs
= Qemu, Xen, HyperV, VMware ESX, ...
o Permet aussi de gérer des conteneurs
= LXC, OpenVZ
o API stable et commune aux hyperviseurs
o Permet d’écrire des applications portables
o Gestion d’un seul noeud hote
= Pas de notion de clustering
e Exemples de fonctionnalités supportées
o Définition, lancement, arrét de domaines (VMs, conteneurs)
o Sauvegarde, Migration
o Limitation et suivi des ressources (mémoire, cpu ...) utilisées
o Gestion des péripheriques, ajout/suppresion a chaud
o Réseau (réseaux virtuels, connexion a un reseau physique, filtrage ...)

80

Libvirt

Schéma d'architecture

e Les applications clientes se lient a la bibliotheque
o virsh: outil ligne de commande
o virt-manager: outil graphique

o libguestfs: outil de gestion d’image de VMs

e Communication locale ou distante vers un demon libvirtd

App

A DL
a1

libvirt

~

API Libvirt daemon

j Monitor\ﬁr QMP

gemu-kvm

Node\

gemu-kvm

L/

81

