Virtualisation de I'0S et conteneurs

Rappel de la problématique

Comment partager un serveur ?

Utilisateurs indépendants
Toute combinaison d’applications
Utilisation a la demande en self-service
o Déploiement rapide
o Sans intervention d’un administrateur
Difficulté
o Toutes les applications voient
» Les mémes fichiers
= Les mémes identifiants réseaux
= Les mémes processus
o Inadaptation des interfaces standardard des OS
= Manque de flexibilité
= Nécessite de définir une politique centralisée
= Configuration de I’application spécifique a chaque déploiement

L3 virtualisation du matériel

Multiplexage du matériel

e Chaque utilisateur accede a son instance du matériel (VM) qui lui est dédiée

o Interface matérielle équivalente a une machine physique
o Déploiement d’un OS adapté a son application

« Installation de I’application dans un environnement maitrisé

o Installation des bibliotheques, supports exécutifs
o Pas de conflits sur les chemins, ports, ...

L3 virtualisation du matériel

Avantages

e Interface matérielle relativement simple, stable
o Facilite I’écriture d’un hyperviseur sécurisé
« Offre aux utilisateurs le controle complet de leur environnement logiciel
o Y compris le systeme d’exploitation
o Méme flexibilité qu’'une machine physique dédiée
 Isolation compléte des VMs
o Multiplexage bas-niveau
o L’hyperviseur ne gere que du matériel virtuel
o Indépendance complete a ce qui est executé dans chaque VM

L3 virtualisation du matériel

Suivant les situations: avantages = inconvénients

« Neécessité de gérer un systéme d’exploitation complet
o Besoin réel: déployer une application de facon reproductible
o Concepts d’administration systéme a maitriser
o Comlexité d’'un déploiement d’OS
o Lourdeur d’un transfert d’image de VM
« Colt de I'isolation apportée par la virtualisation du matériel
o Perte de performance
= Interruptions logicielles
= MMU imbriquée
= Multiples niveaux d’ordonnancement indépendants
o Faible densité d’applications
= Un OS complet par application
= Mémoire consommeée par chaque OS
= Pas de partage de cache de fichier etc.
o Temps de lancement d’'un OS complet

La virtualisation du systéme d exploitation

Virtualisation des interfaces d'un 0S

o Equivalent a un multiplexage de I'OS

o Plusieurs OS virtuels indépendants
e Un méme OS gere simultanément plusieurs instances de son interface

o Utilisables de facon indépendante, sans conflit par plusieurs applications
e Notion de namespace

o Permet a un méme identifiant de ressource de désigner différentes choses
pour différentes applications

La virtualisation du systéme d exploitation

Exemple: virtualisation du systéme de fichiers

« Sans virtualisation de ’OS
o Attribuer a chaque application des répertoires pour leurs executables,
données ..
o Configurer les droits d’accés nécessaires
o Configurer les applications pour utiliser ces chemins
o Avec virtualisation de I’'OS
o Chaque application a une vue différente du systeme de fichiers
= Mise en place pour un groupe de processus
o Toutes les applications peuvent étre configurées dans des chemins identiques
= Un méme chemin de fichier pointe vers des données différentes

La virtualisation du systéme d exploitation

Autres exemples

e Noms d’utilisateurs et permissions

o Plusieurs utilisateurs root

o Priviléges limités a une partie des ressources
 Identifiants de processus

o Plusieurs processus ayant le méme PID

o Visibilité restreinte aux processus du méme espace de PID
 Identifiants réseaux

o Adresses IP, ports et noms d’interfaces indépendants

o Plusieurs processus peuvent écouter sur 0.0.0.0:80

La virtualisation du systéme d exploitation

Virtualisation “a la carte”

« Exemple:

o Deux processus peuvent partager les mémes identifiants réseaux ...

o Mais pas les mémes identifiants de fichiers

Le noyau est partagé par tous les processus

e Pas d’augmentation de la consommation mémoire
« Partage des caches
« Pas de temps d’intialisation au lancement d’une application

La gestion des namespaces par Linux

Linux gére 6 namespaces différents

« MOUNT: (CLONE_NEWNS, depuis Linux 2.4, 2002)
o Points de montages vus par un groupe de processus
o Appels systéemes mount(), unmount()
o UTS: (CLONE_NEWUTS, depuis Linux 2.6.19)
o UNIX Time-sharing System
o Vision du hostname et domainname
o Appels sytemes uname(), sethostname() setdomainname()
e IPC: (CLONE_NEWIPC, depuis Linux 2.6.19)
o Vision des objets de communcation inter-processus
o Identifiants hors systéme de fichiers
o Voir commandes ipcmk ipcs ..

10

La gestion des namespaces par Linux

Linux gére 6 namespaces différents

e PID: (CLONE_NEWPID, depuis Linux 2.6.24)
o Vision des identifiants de processus
o Deux processus peuvent avoir le méme PID dans deux NS différents
= Possibilité d’avoir plusieurs PID 1
o Correspondance avec un PID dans le namespace parent
o Interaction uniquement avec des processus de son namespace (et ses fils)
= Appel systéme kill()
« NET: (CLONE_NEWNET, depuis Linux 2.6.24-29)
o Vision des ressources réseaux
o Adresses IP, numéro de ports, tables de routage etc.
o USER: (CLONE_NEWUSER, depuis Linux 2.6.23-3.8, 2013)
o Vision des identifiants d’utilisateur et de groupes
o Un méme UID peut correspondre a deux utilisateurs différents dans deux NS
o Correspondance avec un UID dans le namespace parent
o Privileges limités a un namespaces (et ses fils)

11

La gestion des namespaces par Linux

Linux gére 6 namespaces différents

e Un travail de longue haleine
o Plus de 10 ans pour développer ’ensemble des namespaces
o Bien définir la sémantique de ces nouvelles API
o Nombreuses problématiques de stabilité, sécurite ...
o Nouvelles surfaces d’attaque
= Interfaces précédemment réserveées aux administrateurs

12

La gestion des namespaces par Linux

Création de namespaces

Tout processus est dans une instance de chacun des 6 namespaces
Création d’un nouveau namespace pour un processus fils lors d’un fork

o Appel systéme clone()

o Par défaut, un processus fils hérite du namespace de son pere

o Utilisation des flags CLONE_* en argument de clone()

= Place le fils dans une nouvelle instance d’un ou plusieurs namespaces

Création d’un nouveau namespace pour le processus courant

o Appel systéeme unshare()

o Utilisation des mémes flags CLONE_*

o Commande systéme unshare
Rejoindre un namespace existant

o Appel systéme setns()

o Flags CLONE_* et descripteur d’un fichier dans /proc/[pid]/ns

o Commande systéme nsenter

13

La gestion des namespaces par Linux

Création de namespaces

« Par défaut un namespace est détruit lorqu’il ne contient plus de processus
o Toutes les ressources associées sont détruites
o EX:interfaces réseau

« Les namespaces d’un processus sont visibles a I’aide de

$ 1s -1 /proc/self/ns

lrwxrwxrwx 1 root root 0O Dec 9 22:31 ipc -> 'ipc:[4026531839]"
lrwxrwxrwx 1 root root 0 Dec 9 22:31 mnt -> 'mnt:[4026531840]"
lrwxrwxrwx 1 root root 0 Dec 9 22:31 net -> 'net:[4026531992]"
lrwxrwxrwx 1 root root 0O Dec 9 22:31 pid -> 'pid:[4026531836]"
lrwxrwxrwx 1 root root 0 Dec 9 22:31 user -> 'user:[4026531837]"
lrwxrwxrwx 1 root root 0 Dec 9 22:31 uts -> 'uts:[4026531838]"

 Savoir si processus sont dans un méme namespace

o Leur fichier /proc/[pid]/[type ns] pointe sur le méme inode
« Commande systeme lsns

o Liste les namespaces de chaque processus

14

La gestion des namespaces par Linux

Namespaces UTS

e Lancement d’un processus dans un nouveau namespace
o Nécessité d’étre root pour appeler unshare
= Sauf si on créee un nouveau user namespace avec - -user
o Par défaut unshare lance un shell
= Possibilité de lancer toute commande

S unshare --uts

$ hostname -f

vm0O .pcocc

S hostname container
$ hostname -f

container

e Pour le reste du sytéme le hostname n’a pas change

$ hostname -f

vmO .pcocc

15

La gestion des namespaces par Linux

Namespaces réseau
o Ala création, un namespace réseau n’a qu’une interface loopback

$ unshare --net

S ip a

1: lo: <LOOPBACK> mtu 65536 gdisc noop state DOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

16

La gestion des namespaces par Linux

Namespaces réseau

e Une paire veth est souvent utilisée pour établir une connexion entre deux
namespaces

ip link add name host side type veth peer name ns_ side
btctl addbr bro0

ip link set br0 up

ip addr add br0 172.16.0.1/24

brctl addif br0 host side

ip link set host side up

v 0 »r U»vr »r »r

ip link set ns side netns 1866

e Le veth est alors visible dans le nouveau namespace réseau

$ ip link set ns side name ethO up
$ ip addr add 172.16.0.2/24 dev ethO

17

La gestion des namespaces par Linux

Namespaces utilisateur

e Création d’'un nouveau namespace utilisateur
o Peut étre réalisé sans droits particuliers

user@vm0O $ unshare --user --map-root-user
root@vmO $ brctl addbr br0
add bridge failed: Operation not permitted

« Pas de d’acces privilégiés a des namespaces créés par un autre user namespace !

user@vm0 $ unshare --user --map-root-user --net

root@vm0O $ brctl addbr br0O # OK

18

La gestion des namespaces par Linux

Namespaces utilisateur

« Correspondance entre UIDs dans les namespaces parent et fils

$ cat /proc/self/uid map
0 1000 1

 Possibilités de définir plusieurs lignes
e Chacune contient trois valeurs:
o UID de départ dans le namespace fils
o UID de départ dans le namespace parent
o Nombre d’UIDs consécutifs
e Cas d’un utilisateur non-privilégié dans le namespace parent
o Uniquement possible d’assigner son UID a un unique UID du namespace fils

19

La gestion des namespaces par Linux

Namespaces utilisateur

 Plus de droits possibles grace la commande setuid newuidmap
o Configurée par un administrateur dans /etc/subuid
o Autorise a utiliser une plage d’UID parent

$ cat /etc/subuid

diakhate:100000:65536

$ newuidmap [pid] 0 1000 1 1 100000 65536
$ cat /proc/[pid]/uid map

0 1000 1

1 100000 65536

20

Les conteneurs: notion aux contours variables

Isolation (contain)

« Groupes de processus isolés les uns des autres et du reste de ’0OS
o Différents mécanismes et niveaux d’isolation
» Interfaces de I’'OS

o Namespaces (et capabilities)
= Vision d’un OS partiellement ou totalement indépendant
= Prévention des interactions avec les objets hors du conteneurs
= Elevation de privilege restreinte au conteneur

« Ressources matérielles disponibles

o Control Groups
= CPU: sous-ensemble des CPUs, QoS ...
= Mémoire: quantité, zones NUMA ...
= Périphériques: restrictions des périphériques utilisables ...
= I/O: QoS, quotas ...

21

Les conteneurs: notion aux contours variables

Format de transport interoperable (conteneur)

: U i Wl o b Iic
2 pd =O
(0] 0B =
b 8588
.E' A standard container that is 3 E%E
=8l loaded with virtually any 82 &8
£l goods, and stays sealed until 288
43l it reaches final delivery.

...in between, can be loaded and
unloaded, stacked, transported

nEn efficiently over long distances, = £
5 5 5 and transferred from one mode Ton AL
>89 4 of transport to another 2 =<2
_m"';B =am-r
v o 3 2 s
52 f o3y
s
E% X% 20
E c ‘-'.-r.":’...-'-'l-
o °Z
= -

oo
g.
s
o
=

Les conteneurs: notion aux contours variables

Format de transport interoperable (conteneur)

90% of all cargo now shipped in a standard container

Order of magnitude reduction in cost and time to load and unload ships
Massive reduction in losses due to theft or damage

Huge reduction in freight cost as percent of final goods (from >25% to <3%)
* = massive globalization

docker * 5000 ships deliver 200M containers per year

23

Les conteneurs: notion aux contours variables

Format de transport interoperable (conteneur)

e Transport facile d’une application d’un serveur a lautre
o Fonctionne a I'identique sur:
= Un laptop de développement
= De mutliples serveurs en production
« Format contenant ’ensemble des données nécessaires
o Fichers de ’application (exécutables, ...)
o Methode de lancement de ’application
o Etablissement de correspondances entre ressources virtuelles et hotes
= Ex: Identifiant de port dans un conteneur -> identifiant port hote

24

Les conteneurs: notion aux contours variables

Premiéres formes de conteneurs: isolation

e Objectif: machines virtuelles plus 1égéres
o Plus rapide a démarrer
o Plus dense
o Un systéme complet par conteneur
= init/systemd
= Démons traditionnels (SSH)
« Exemples:
o OpenVZ (2005)
= Nécessite un noyau Linux patché
= Adopté par des fournisseurs d’hébergement en ligne
= Moins couteux que des machines virtuelles
o LXC (2008)
= Basé sur les namespaces introduits progressivement dans Linux
= Adoption relativement faible initialement
= Support des namespaces incomplet
= Gain insuffisant par rapport aux VMs

25

Les conteneurs: notion aux contours variables

Docker (2013): conteneurs transportables

« Empaquete une unique application (souvent un unique processus)
o Inclus toutes les dépendances
» Recette de construction de conteneurs
o Geénération reproductible
o Peut étre associée au code source de I’application
« Base de registre de conteneurs
o Push/Pull
o Recherche d’applications containerisée
« Execution a I'identique sur tout type de machine

26

Architecture de Docker

Une application client/serveur

« Ecrite en langage go
o La CLI (docker run/build ...) communique avec un démon docker
o API REST (socket Unix local ou TCP)
 Utilisation reservée a un utilisateur privilégié
o I’acces a ces commandes équivaut a étre root sur le machine hote

ocker s o)
docker build ,—,—I D\ockerdaemon _ | @ R Z’
K 4\ '.." -~ ~ %
- | q = A
docker pull j \‘\ : \\
docker run —{7 T~ N @ (’e NGl
”]]]]]]Iﬂmg ‘. \/ /
Ny /

=

LY

27

Images Docker

Données et configuration permettant de créer un conteneur

e Données: systeme de fichiers root du conteneur

e Configuration:

Méta-données: Auteur, labels, date de création, etc.
Commande a exécuter pour lancer le conteneur
Variables d’environnement a positionner

Ports a rendre accessibles

etc.

O O O O O

28

Images Docker

Empilement de couches (layers)

Chaque couche ajoute/modifie/supprime données ou configuration
Partage possible de couches entre plusieurs images
Permet de créer des couches communes réutilisables
Spécialisation progressive
Découple la gestion de différents aspects

o OS de base

o Dépendances communes a une classe d’application

o Application

o Configuration de I’application

29

Images Docker

Exemples de couches pour une application Web Java

OS de base (ex: Ubuntu)

Personnalisation de la distribution par ’entreprise
Runtime Java

Tomcat

Dépendances de I’application

Code et données de I’application

Configuration de I’application

30

Conteneurs et images

Deux concepts distincts

e Une image est un modele
« Elle permet d’instancier un nombre illimité de conteneurs
« Chaque conteneur correspond a un ensemble de processus partageant
o Espaces de nommages
= Systeme de fichier construit a partir de I'image
e Fonctionnement en mode copy-on-write
o Evite de copier 'image compléte pour lancer un conteneur
o Couches de I'image utilisées en lecture seule
o Ajout d’une couche supplémentaire modifiable

31

Conteneurs et images

T T

91e54dfb1179

d74508fb6632

c22013c84729

d3alf33e8ab5a

ubuntu:15.04

1.855 KB

194.5 KB

188.1 MB

—

i «—— Container layer

> |mage layers (R/0)

Container

(based on ubuntu:15.04 image)

32

Conteneurs et images

M= W=

L_Thin R/W layer__|

SN

L__Thin R/W layer__}

.

91e54dfb1179

d74508fb6632

c22013c84729

d3alf33e8aba

0B

1.895 KB

194.5 KB

188.1 MB

ubuntu:15.04 Image

33

lancement de conteneurs

Syntaxe ligne de commande

« Commande docker run
o Instancie un conteneur a partir d’'une image
= Namespaces, rootfs, couche modifiable, isolation ...
o Exécute une commande dans cet environnement
= Commande par défaut spécifiée dans les meta-données
= Commande passée en ligne de commande
o Arrét du conteneur quand la commande se termine

34

lancement de conteneurs

Exemple

$ docker run -i -t ubuntu cat /etc/os-release
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
32802c0cfad4d: Pull complete

dal315cffa03: Pull complete

fa83472a3562: Pull complete

£85999%9a86bef: Pull complete
Digest: sha256:6d0e0c26489e33f5a6f0020edface2727db9489744ecc94f50c7fa671£23c49

Status: Downloaded newer image for ubuntu:latest
NAME="Ubuntu"

VERSION="18.04.1 LTS (Bionic Beaver)"

ID=ubuntu

-]

 -i: Redirige stdin dans le conteneur
o -t: Alloue un pseudo-terminal
e ubuntu: Nom de 'image de conteneur

35

lancement de conteneurs

Récupération de [image

 Initialement I'image ubuntu n’est pas stockée localement
o Récupération dans une base de registre
o Stockage local pour les futures utilisations

e ubuntu fait référence a:
o I'image ubuntu
o dans la bibliothéque d’image officielle (library)
o dans la base de registre DockerHub (docker.io)
o avec le version latest

« Equivalent a: docker.io/library/ubuntu:latest

« La bibliotheque DockerHub contient
o Des images boites a outil tel que busybox

Des images de distributions Linux de base

(¢]

Visible avec un navigateur sur https://hub.docker.com/
En ligne de commande avec docker search

O O O

De nombreux composants standards tel que httpd, nginx, mysql, redis ...

36

https://hub.docker.com/

lancement de conteneurs

Exemples

« La commande docker pull permet de récupérer manuellement une image

$ docker pull centos
$ docker pull docker.io/library/fedora:27
$ docker pull nvcr.io/hpc/namd:2.13b2-singlenode

« Lister les images stockées localement

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SILZE

centos latest lell48e4d4cc2c 3 days ago 202MB
ubuntu latest 93fd78260bdl 2 weeks ago 86.2MB
nvcr.io/hpc/namd 2.13b2-singlenode 5375a283a442 4 weeks ago 366MB
fedora 277 7a2e85963474 3 months ago 236MB

e Une image locale est référencable par son identifiant

S docker run -it 93fd

37

lancement de conteneurs

Gestion des conteneurs instanciés

e La commande docker run est une commande cliente de dockerd
e Les processus du conteneur sont exécutés par le démon docker
e Redirection des E/S standard vers le client

root
root
[..]
root
root
root

root

8663
12212

8469
8470
12230
12247

S
Sl

Ssl
Ssl
S1

Ss+

09:

11

09:
09:

11
11

16

:06

08
08

:06
:06

O:
O:

O O O O

00
00

148
227
:00
:00

bash
_ docker run -ti ubuntu
/usr/bin/dockerd -H unix://

/usr/bin/containerd

N

containerd-shim -namespace moby -wo

_ /bin/bash

e Lancement du conteneur en arriere plan: docker run -d
o Sorties standard collectées par dockerd
o APAX: se détacher d’un conteneur lancé en interactif
= Alternative: tuer le client docker

[ooc

38

lancement de conteneurs

Gestion des conteneurs instanciés

e Lister les conteneurs

S docker ps -a # Inclure les conteneurs terminés

CONTAINER ID IMAGE COMMAND STATUS
72a936f72eae jpetazzo/clock "/bin/sh Up 39 seconds
75ad68b88272 ubuntu "/bin/bash" Exited (0)
05al6ca9l7ac httpd "httpd-for Exited (0)

S docker ps -1 # Dernier conteneur lancé

S docker ps -gl # ID du dernier conteneur lancé

PORTS

e Un conteneur peut étre référenceé par son ID ou son nom
o Nom par défaut ([adjectif]_[hacker ou scientifique])
o Spécifiable a la création du conteneur avec - -name

NAMES
zen archimedes
clever nightingale

priceless montalcini

39

lancement de conteneurs

Gestion des conteneurs instanciés
o S’attacher a un conteneur en arriére plan

$ docker attach zen archimedes

 Afficher les logs d’un conteneur

S docker logs 72a936f72eae

o Stockeés par dockerd via différents drivers

= json-file (par défaut), journald, gelf (intégration a logstash) ...

= Seuls json-file et journald permettent I'utilisation de docker logs
o Configurable globalement ou par conteneur

S docker run --log-driver=json-file --log-opt max-size=10m --log-opt max-file=3

$ docker run --log-driver=gelf --log-opt=gelf-address=udp://elasticsearch:12201

(..
(..

-]
-]

40

lancement de conteneurs

Gestion des conteneurs instanciés

« Se connecter a un conteneur
o Pas besoin de démon SSH
o Lancement d’un processus dans les mémes namespaces que le conteneur

S docker exec -ti [container i1d] /bin/bash

« Equivalent a la commande nsenter

$ nsenter -a -t [container process pid] /bin/bash

e nsenter permet de choisir les namespaces rejoints
o Utile pour exécuter une commande inexistante dans le conteneur
e Aréserver a des fins de mise au point / debug

o Lorsque les logs et métriques collectées ne donnent pas suffisament
d’information
o Automatiser la construction et déploiement de conteneurs

41

lancement de conteneurs

Gestion des conteneurs instanciés

e Par défaut un conteneur s’arréte a la terminaison de la commande exécutée
e Tuer un conteneur:

S docker stop 72a936f72eae

$ docker kill zen archimedes

e Relancer un conteneur arrété:

S docker start [-a] 72a936f72eae

o Relance la commande exécutée a la création du conteneur
o La couche de stockage modifiable est réutilisée
o Les nouvelles logs sont écrites a la suite des précédentes

42

lancement de conteneurs

Gestion de la couche modifiable
o Lister les différences contenues dans la couche modifiable

S docker diff [container 1d]

/var

C /var/lib

C /var/lib/apt

C /var/lib/apt/lists

A /var/lib/apt/lists/security.ubuntu.com ubuntu dists bionic-security InRelease

[oool

43

lancement de conteneurs

Gestion de la couche modifiable

« Sauvegarder la couche modifiable pour créer une nouvelle image
o Pas la maniere recommandée de créer des images

$ docker commit 0d3652f5973e diakhate/myimage:v2

« Possibilité de pousser ses propres conteneurs sur DockerHub
o Regle de nommage: [login]/[container_name]:[tag]

S docker login
$ docker push diakhate/myimage:v2

» Note sur les tags de version (ici v2)
o Pas de sémantique particuliere, y compris le tag latest
= Simple tag par défaut a la création/selection d’une image
o Une image peut avoir plusieurs tag

S docker tag myimage:v3 diakhate/myimage:latest

44

lancement de conteneurs

Gestion de la couche modifiable

« Nettoyer les données inutilisées ou en cache
o Par défaut des données s’accumulent a chaque lancement de conteneur

S docker container rm [container 1id]

$ docker container prune # Conteneurs arrétés

S docker image rm [image id]

docker image prune # Images inutilisées

S docker system prune # Nettoyage complet

Implémentation des couches d'images sous Linux

Le systéme de fichiers overlay

« Capable de combiner les données de plusieurs répertoires indépendants

o N répertoires read-only (lowerdir)
o 1 répertoire modifiable (upperdir)
o 1 répertoire temporaire (workdir, doit étre dans le méme FS que upperdir)

« Utilisation par docker

$ mount -t overlay overlay -o \
lowerdir=/var/lib/docker/overlay2/[layer 1d0]/diff:\
/var/lib/docker/overlay2/[layer idl]/diff:\
/var/lib/docker/overlay2/[layer id2]/diff:\

upperdir=/var/lib/docker/overlay2/[layer id3]/diff,\
workdir=/var/lib/docker/overlay2/[layer id3]/work \
/var/lib/docker/overlay2/[layer id3] /merged

46

Implémentation des couches d'images sous Linux

Le systéme de fichiers overlay

e Fonctionnement

o Quverture d’un fichier en lecture

= Parcours en profondeur des couches d’image jusqu’a trouver le fichier
o Ouverture d’un fichier en écriture

= Sile fichier est dans la couche modifiable, ouverture de ce fichier

= Sinon copie du fichier depuis la couche précédente le contenant

= copy up: potentiellement coliteux

= Siaucune couche ne le contient, création dans la couche modifiable
o Suppression d’un fichier

= Création d’un fichier spécial dans la couche modifiable

= Masque les fichiers des couches suivantes

47

lancement de conteneurs

Gestion du stockage persistent

« Eviter d’écrire dans la couche modifiable

o Performances sub-obptimales a cause du copy-on-write

o Séparer I'application de ses données persistentes

o Recréer le conteneur sans perdre les données
= Conteneur jetable
= Mise a jour en relancant une nouvelle version de 'image
= Exemple: conteneur de base de données

o Ne pas stocker de secrets dans une image
= Eviter une fuite accidentelle

48

lancement de conteneurs

\lolumes

« Espace persistent attaché a un ou plusieurs conteneurs
o Permet de partager un dossier entre plusieurs conteneurs
= Simultanés ou successifs (mise a jour)
o Offre les performances natives du FS sous-jacent
= Pas de copy-on-write
o Stockage géré par docker
= Plugins permettant de gérer divers systemes de stockage
e Création d’'un volume

$ docker volume create dbvolume

$ docker volume 1s

$ docker run -v dbvolume:/var/libmysqgl --name mysgl57 mysgl:5.7
S docker run --volume-from mysgl57 --name mysgl80 mysgl:8.0

49

lancement de conteneurs

Réseau

e Docker gere différents plugin réseaux.
o Les plugins de base incluent:

null

bridge (par défaut)
host

container

macvlan

O O O O O

« L’option - - net permet de selectionner un plugin au lancement

50

lancement de conteneurs

Réseau null

Pas de réseau disponible dans le conteneur
Seule l'interface lo est présente
o Interface propre au conteneur
o Ne permet de communiquer qu’avec les autres processus du conteneur
Impossibilité de communiquer avec 'extérieur
Permet d’isoler un conteneur pour raison de sécurité par exemple

51

lancement de conteneurs

Réseau bridge

e Le conteneur recoit une interface lo et eth0
o ethO est implémentée par une paire veth
L’autre c6té de la paire est connectée a un bridge géré par docker
= Par défaut docker0O
Son IP est attribuée dans un subnet privé interne au bridge
Le traffic est routé via du NAT
= Regle iptables MASQUERADE en sortie (~équivalent SNAT)
= Régle iptables DNAT en entrée
Le conteneur peut mettre en place ses propres configuration réseau
= Routes
= Regles IPTables
= etc.

(¢]

(¢]

o}

(¢]

52

lancement de conteneurs

Réseau bridge

e Création de réseaux additionnels

$ docker network create mynet

e Lister les différents réseaux

$ docker network list
NETWORK ID NAME DRIVER SCOPE
2c98279pf33c mynet bridge local

[cool
e Chaque réseau bridge correspond a un périphérique bridge hote

S ip a

[...]

br-2c98279%0f33c: <NO-CARRIER, BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue state
link/ether 02:42:9a:87:0e:82 brd ff:ff:ff:ff:ff:ff

inet 172.18.0.1/16 brd 172.18.255.255 scope global br-2c982790f33c

lancement de conteneurs

Réseau bridge

« Exposition de port
o Les IP alloués au conteneur sont privées
o Accessible uniquement depuis ’héte
= Interface bridge docker0
o Des ports peuvent étre redirigés de I’hote vers un conteneur
o Accessible depuis I’exterieur via I'IP hote

$ docker run -d -p 8080:80 httpd

$ docker ps

CONTAINER ID IMAGE COMMAND STATUS PORTS

8ac00c87ccad4 httpd "httpd-fore... Up 4 seconds 0.0.0.0:8080->80/tcp
$ curl localhost:8080

<html><body><hl>It works!</hl></body></html>

NAMES

cranky darwin

54

lancement de conteneurs

Réseau bridge

e Défintion de noms DNS dynamiques
o Au sein d’un réseau
o Basés sur le nom du conteneur

S docker run -d --net mynet --name web httpd

e Les autres conteneurs du réseau pourront accéder via les adresses
o web
o web.mynet
e Permet de découvrir ’adresse des services dynamiquement
o Un service par conteneur
« Utilisation d’'une adresse différente du nom du conteneur avec ’option - -net-alias

55

lancement de conteneurs

Réseau host

e Aucune isolation réseau n’est appliquée au conteneur
o Acces direct aux interfaces réseau de I’hote
o Peut s’attacher a n’importe quel port réseau
o Performances natives
= Pas de traversée de veth, bridge etc.
= Pas de traduction d’adresse via IPTables
o La configuration des interfaces reste maitrisée par ’hote

56

lancement de conteneurs

Reseau container

e Le conteneur partage le réseau d’'un autre conteneur
o Méme namespace réseau
o Mémes interfaces
= Communication possible a travers I'interface lo
o Partage les interfaces, routes, regles IPtables etc.

57

Construction d'images

Dockerfiles

» Recette de construction d’'image
 Suite d’instructions indiquant
o Comment construire I'image
o Comment lancer un conteneur a partir de I'image
= Commande a exécuter
= Ports a exposer
= Volumes a monter
e Un Dockerfile est associé a un contexte
o Répertoire contenant le Dockerfile
o Peut contenir des fichiers nécessaire a la construction

58

Construction d'images

Exemple de Dockerfile

 Fichier Dockerfile simple

FROM ubuntu
RUN apt-get update
RUN apt-get install -y cowsay

CMD ["/usr/games/cowsay", "Salut", "!"]

« FROM: image a utiliser pour commencer la construction
 RUN: commande (non-interactive) exécutée pour la construction
o CMD: commande par défaut lancée a I’exécution du conteneur

59

Construction d'images

« Dans le répertoire contenant (uniquement) le Dockerfile

S docker build -t cowsay

Sending build context to Docker daemon 2.048kB
Step 1/4 : FROM ubuntu

---> 93£d78260bd1l

Step 2/4 : RUN apt-get update

-——> Running in 74bfedl25b00

[...] # Sorties de la commande apt-get update
Removing intermediate container 74bfedl125b00

---> ffb71bf8bl0a

[...] # Sorties de la commande apt-get install -y cowsay
-——> Running in 9fed24d532fb

Removing intermediate container 9fed24d532fb

-——> f7afl7acd5cl

Step 4/4 : CMD ['/usr/games/cowsay', 'Salut', '!']
—-—-> Running in £978d29bf5a6

Removing intermediate container £978d29bf5a6

-—=> b65d477ae004

Successfully built b65d477ae004

Successfully tagged cowsay:latest

60

Construction d'images

Ftapes de la construction

Sending build context to Docker daemon 2.048kB

e Le contexte de construction
o Répertoire passé en argument a docker build
o Le répertoire complet est envoyé au démon docker
o Permet de lancer une construction a distance
o Ne pasy stocker des fichiers inutiles

61

Construction d'images

Ftapes de la construction

Step 2/4 : RUN apt-get update
-——> Running in 74bfedl125b00
[...]

Removing intermediate container 74bfedl25b00
-——> ffb71bf8bl0a

e Un conteneur (74bfed125b00) est créé a partir de I'image de base

« La commande apt-get update y est exécutée

e Le conteneur est sauvegardé dans I'image ffb71bf8b10a

e Le conteneur temporaire (74bfed125b00) est supprimeé

e I’image ffb71bf8b10a sera utilisée pour I’étape suivante

Il peut étre utile de limiter le nombre de couches
o Notamment images déployées en production sur plusieurs hotes
o Regrouper plusieurs lignes RUN avec des ‘&&’

62

Construction d'images

Ftapes de la construction

 Visualisation avec la commande docker history

S docker history cowsay

IMAGE CREATED
3b85d6a3laal 24 minutes ago
f7afl7acd5cl 27 minutes ago
ffb71bf8bl0a 27 minutes ago
93£d78260bdl 2 weeks ago
<missing> 2 weeks ago
<missing> 2 weeks ago
<missing> 2 weeks ago
<missing> 2 weeks ago

CREATED BY

/bin/sh -c
|0 /bin/sh
|0 /bin/sh
/bin/sh -c
/bin/sh -c
/bin/sh -c
/bin/sh -c
/bin/sh -c

(nop) CMD ["/usr/games/cowsay" ..
-c apt-get install -y cowsay

—-Cc apt-get update

(nop) CMD ["/bin/bash"]

mkdir -p /run/systemd && echo 'do..
rm -rf /var/lib/apt/lists/*

set -xe && echo '#!/bin/sh' > /..
(nop) ADD file:39e5bcl57a8be63bb..

»

63

Construction d'images

Ftapes de la construction

e Mise en cache de chaque image intermédiaire
o Sionrelance la méme construction le résultat est instantanné
o Cache basé sur les chalnes de caractéere du Dockerfile
o Les commandes suivantes sont différentes pour Docker

RUN apt-get install httpd nginx

RUN apt-get install nginx httpd

o Il peut parfois étre utile de s’affranchir du cache

RUN apt-get update

e Les paquets ne sont jamais mis a jour apres la premiere exécution
o docker build -no-cache

64

Construction d'images

Résultat

S docker run -ti cowsay

< Salut ! >

65

Construction d'images
La directive ENTRYPOINT

Définit une commande par défaut (comme CMD)

Différence: traitement des arguments passés au lancement du conteneur
o Compléte la commande ENTRYPOINT au lieu de la remplacer

CMD peut étre utilisé simultanément
o Correspond aux arguments par défaut

Exemple

FROM ubuntu

RUN apt-get update

RUN apt-get install -y cowsay
ENTRYPOINT ["/usr/games/cowsay"]
CMD ["Salut !"]

66

Construction d'images

Résultat

docker run -ti cowsay-ep

< Salut ! >

67

Construction d'images
La directive EXPOSE

EXPOSE 80
EXPOSE 53/udp

Indique les ports a rendre accessible depuis I’extérieur
Tous les ports sont privés par défaut

La directive EXPOSE ne fait que donner une information
Lancement du conteneur avec

S docker run -P -it container

Alloue automatiquement des ports hote pour chaque port exposé
docker ps ou docker inspect permettent de connaitre les ports attribués

$ docker inspect 2e66 --format \
'"{{ (index (index .NetworkSettings.Ports "80/tcp") 0).HostPort}}'
32775

68

Construction d'images
Les directives COPY et ADD

COPY . /src

» Copie depuis le répertoire contexte vers un répertoire cible du conteneur
o Compatible avec la mise en cache des couches
o Verifie si le fichier a changé

« Empéche toute copie hors du répertoire (via ..)

ADD [url] ./src
ADD ./data.tar ./src

o Similaire a COPY
o Capable de récupérer des fichiers distants
= Pas de mise en cache possible
o Décompresser des archives

69

Construction d'images
la directive VOLUME

VOLUME /var/lib/mysqgl

« Crée automatiquement un volume (nommeé aléatoirement) au lancement du
conteneur

S docker volume list

DRIVER VOLUME NAME

local 88e7d02e4£3688db2eccb02081f8affacallalbf82cl6f8£3d504bd2b29¢c3946
local 52214d63b2487141350a425136ccbb63e296dda’75aabl7376533561286cbfe88
local fc71£d0362dfd7b006££8£223676a26fbal’75157c2cbf02ad7aa6833ec045e£9

e L’utilisateur peut toujours spécifier un volume spécifique avec -v

$ docker run -ti -v myvolume:/toto cowsay-ep /bin/bash

70

Construction d'images
La directive ENV

ENV HTTP PROXY http://webproxy.mycompany.com:3128
ENV WEBAPP PORT 8080

e Positionne des variables d’environnement a I’exécution de commandes dans le
conteneur
 Possibilité de les surcharger au lancement (ou d’en définir d’autres)

docker run -e WEBAPP PORT=8000

71

Construction d'images

Construction multi-étapes

Compilation a I'intérieur d’un conteneur
Permet de compiler son application de facon reproductible
Inclusion des dépendances de compilation au sein du conteneur
Générer une image de conteneur pour ’exécution

o Contenant uniquement les dépendances d’exécution
Supprimer des fichiers/paquets ne sert a rien

o Crée une nouvelle couche qui masque les fichiers

o La couche précédente les contient toujours
Utilisation de:

o FROM image AS: nommage d’une étape intermédiaire

o COPY —from=[image]: copie de fichier d’'une image a lautre

72

Construction d'images

Construction multi-étapes
« Exemple:

FROM ubuntu AS compiler

RUN apt-get update

RUN apt-get install -y build-essential

ADD appsrc.tar /

RUN make -C app

FROM ubuntu

COPY --from=compiler /app/bin/app.exe /app.exe
CMD /app.exe

73

Composition de conteneurs

Docker compose

e Outil externe a docker (ancienemment nommé fig)

o Ecrit en python
« Lancement reproductible de plusieurs conteneurs formant une application
o Workflow

o Inclure un ficher docker-compose.yml dans son code source

o Cloner le dépot de code

o Démarrer ’application multi-conteneurs

$ docker compose up

74

Exemple: Wordpress

version: '3.3'
services:
db:
image: mysqgl:5.7
volumes:
- db_data:/var/lib/mysql
restart: always
environment:
MYSQL DATABASE: wordpress
MYSQL USER: wordpress
MYSQL PASSWORD: wordpress
wordpress:
depends_on:
- db
image: wordpress:latest
ports:
- "8000:80"
environment:
WORDPRESS DB HOST: db:3306
WORDPRESS DB USER: wordpress
WORDPRESS DB PASSWORD: wordpress
volumes:
db data:

75

Composition de conteneurs

Syntaxe Compose

» Sections
o version: indique la version de format de fichier Compose
= Les versions plus récentes supportent plus de fonctionnaliés
o services: images de conteneurs a exécuter
= Image: tag d’'une image locale ou d’un d’épot
= build: chemin vers un Dockerfile
= Options de lancement du conteneur (ports, volumes, variables, ...)
o networks: optionnel, par défaut utilisation d’un réseau priveé a chaque
déploiement
o volumes: optionnel, définit des volumes utilisés par les conteneurs
= Compose réutilise les mémes volumes lorsque 1’on relance ’application

76

Composition de conteneurs

Quelques commandes utiles

e Choisir un nom de projet unique (par defaut: nom du répertoire)

$ docker-compose -p myproject dev up

« Construire les images au lancement de la pile de conteneurs

$ docker-compose up

 Lister les conteneurs de la pile

$ docker-compose ps

77

Composition de conteneurs

Quelques commandes utiles
e Tuer les conteneurs de la pile

S docker-compose kill

e Supprimer les conteneurs

$ docker-compose rm

e Tout nettoyer

$ docker-compose down -v

78

Merci de votre attention !

Questions ?

79

80

