
Virtualisation de l’OS et conteneurs

1

Rappel de la problématique
Comment partager un serveur ?

Utilisateurs indépendants
Toute combinaison d’applications
Utilisation à la demande en self-service

Déploiement rapide
Sans intervention d’un administrateur

Difficulté
Toutes les applications voient

Les mêmes fichiers
Les mêmes identifiants réseaux
Les mêmes processus

Inadaptation des interfaces standardard des OS
Manque de flexibilité
Nécessite de définir une politique centralisée
Configuration de l’application spécifique à chaque déploiement

2

La virtualisation du matériel
Multiplexage du matériel

Chaque utilisateur accède à son instance du matériel (VM) qui lui est dédiée

Interface matérielle équivalente à une machine physique
Déploiement d’un OS adapté à son application

Installation de l’application dans un environnement maîtrisé

Installation des bibliothèques, supports exécutifs
Pas de conflits sur les chemins, ports, …

3

La virtualisation du matériel
Avantages

Interface matérielle relativement simple, stable
Facilite l’écriture d’un hyperviseur sécurisé

Offre aux utilisateurs le contrôle complet de leur environnement logiciel
Y compris le système d’exploitation
Même flexibilité qu’une machine physique dédiée

Isolation complète des VMs
Multiplexage bas-niveau
L’hyperviseur ne gère que du matériel virtuel
Indépendance complète à ce qui est exécuté dans chaque VM

4

La virtualisation du matériel
Suivant les situations: avantages = inconvénients

Nécessité de gérer un système d’exploitation complet
Besoin réel: déployer une application de façon reproductible
Concepts d’administration système à maitriser
Comlexité d’un déploiement d’OS
Lourdeur d’un transfert d’image de VM

Coût de l’isolation apportée par la virtualisation du matériel
Perte de performance

Interruptions logicielles
MMU imbriquée
Multiples niveaux d’ordonnancement indépendants

Faible densité d’applications
Un OS complet par application
Mémoire consommée par chaque OS
Pas de partage de cache de fichier etc.

Temps de lancement d’un OS complet

5

La virtualisation du système d’exploitation
Virtualisation des interfaces d’un OS

Equivalent à un multiplexage de l’OS

Plusieurs OS virtuels indépendants

Un même OS gère simultanément plusieurs instances de son interface

Utilisables de façon indépendante, sans conflit par plusieurs applications

Notion de namespace

Permet à un même identifiant de ressource de désigner différentes choses
pour différentes applications

6

La virtualisation du système d’exploitation
Exemple: virtualisation du système de �chiers

Sans virtualisation de l’OS
Attribuer à chaque application des répertoires pour leurs executables,
données ..
Configurer les droits d’accès nécessaires
Configurer les applications pour utiliser ces chemins

Avec virtualisation de l’OS
Chaque application a une vue différente du système de fichiers

Mise en place pour un groupe de processus
Toutes les applications peuvent être configurées dans des chemins identiques

Un même chemin de fichier pointe vers des données différentes

7

La virtualisation du système d’exploitation
Autres exemples

Noms d’utilisateurs et permissions
Plusieurs utilisateurs root
Privilèges limités à une partie des ressources

Identifiants de processus
Plusieurs processus ayant le même PID
Visibilité restreinte aux processus du même espace de PID

Identifiants réseaux
Adresses IP, ports et noms d’interfaces indépendants
Plusieurs processus peuvent écouter sur 0.0.0.0:80

8

La virtualisation du système d’exploitation
Virtualisation “à la carte”

Exemple:
Deux processus peuvent partager les mêmes identifiants réseaux …
Mais pas les mêmes identifiants de fichiers

Le noyau est partagé par tous les processus
Pas d’augmentation de la consommation mémoire
Partage des caches
Pas de temps d’intialisation au lancement d’une application

9

La gestion des namespaces par Linux
Linux gère 6 namespaces di�érents

MOUNT: (CLONE_NEWNS, depuis Linux 2.4, 2002)
Points de montages vus par un groupe de processus
Appels systèmes mount(), unmount()

UTS: (CLONE_NEWUTS, depuis Linux 2.6.19)
UNIX Time-sharing System
Vision du hostname et domainname
Appels sytèmes uname(), sethostname() setdomainname()

IPC: (CLONE_NEWIPC, depuis Linux 2.6.19)
Vision des objets de communcation inter-processus
Identifiants hors système de fichiers
Voir commandes ipcmk ipcs ..

10

La gestion des namespaces par Linux
Linux gère 6 namespaces di�érents

PID: (CLONE_NEWPID, depuis Linux 2.6.24)
Vision des identifiants de processus
Deux processus peuvent avoir le même PID dans deux NS différents

Possibilité d’avoir plusieurs PID 1
Correspondance avec un PID dans le namespace parent
Interaction uniquement avec des processus de son namespace (et ses fils)

Appel système kill()
NET: (CLONE_NEWNET, depuis Linux 2.6.24-29)

Vision des ressources réseaux
Adresses IP, numéro de ports, tables de routage etc.

USER: (CLONE_NEWUSER, depuis Linux 2.6.23-3.8, 2013)
Vision des identifiants d’utilisateur et de groupes
Un même UID peut correspondre à deux utilisateurs différents dans deux NS
Correspondance avec un UID dans le namespace parent
Privilèges limités à un namespaces (et ses fils)

11

La gestion des namespaces par Linux
Linux gère 6 namespaces di�érents

Un travail de longue haleine
Plus de 10 ans pour développer l’ensemble des namespaces
Bien définir la sémantique de ces nouvelles API
Nombreuses problématiques de stabilité, sécurité …
Nouvelles surfaces d’attaque

Interfaces précédemment réservées aux administrateurs

12

La gestion des namespaces par Linux
Création de namespaces

Tout processus est dans une instance de chacun des 6 namespaces
Création d’un nouveau namespace pour un processus fils lors d’un fork

Appel système clone()
Par défaut, un processus fils hérite du namespace de son père
Utilisation des flags CLONE_* en argument de clone()

Place le fils dans une nouvelle instance d’un ou plusieurs namespaces
Création d’un nouveau namespace pour le processus courant

Appel système unshare()
Utilisation des mêmes flags CLONE_*
Commande système unshare

Rejoindre un namespace existant
Appel système setns()
Flags CLONE_* et descripteur d’un fichier dans /proc/[pid]/ns
Commande système nsenter

13

La gestion des namespaces par Linux
Création de namespaces

Par défaut un namespace est détruit lorqu’il ne contient plus de processus
Toutes les ressources associées sont détruites
Ex: interfaces réseau

Les namespaces d’un processus sont visibles à l’aide de

$ ls -l /proc/self/ns

lrwxrwxrwx 1 root root 0 Dec 9 22:31 ipc -> 'ipc:[4026531839]'

lrwxrwxrwx 1 root root 0 Dec 9 22:31 mnt -> 'mnt:[4026531840]'

lrwxrwxrwx 1 root root 0 Dec 9 22:31 net -> 'net:[4026531992]'

lrwxrwxrwx 1 root root 0 Dec 9 22:31 pid -> 'pid:[4026531836]'

lrwxrwxrwx 1 root root 0 Dec 9 22:31 user -> 'user:[4026531837]'

lrwxrwxrwx 1 root root 0 Dec 9 22:31 uts -> 'uts:[4026531838]'

Savoir si processus sont dans un même namespace
Leur fichier /proc/[pid]/[type ns] pointe sur le même inode

Commande système lsns
Liste les namespaces de chaque processus

14

La gestion des namespaces par Linux
Namespaces UTS

Lancement d’un processus dans un nouveau namespace
Nécessité d’être root pour appeler unshare

Sauf si on créee un nouveau user namespace avec - -user
Par défaut unshare lance un shell

Possibilité de lancer toute commande

$ unshare --uts

$ hostname -f

vm0.pcocc

$ hostname container

$ hostname -f

container

Pour le reste du sytème le hostname n’a pas changé

$ hostname -f

vm0.pcocc

15

La gestion des namespaces par Linux
Namespaces réseau

À la création, un namespace réseau n’a qu’une interface loopback

$ unshare --net

$ ip a

1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

16

La gestion des namespaces par Linux
Namespaces réseau

Une paire veth est souvent utilisée pour établir une connexion entre deux
namespaces

$ ip link add name host_side type veth peer name ns_side

$ btctl addbr br0

$ ip link set br0 up

$ ip addr add br0 172.16.0.1/24

$ brctl addif br0 host_side

$ ip link set host_side up

$ ip link set ns_side netns 1866

Le veth est alors visible dans le nouveau namespace réseau

$ ip link set ns_side name eth0 up

$ ip addr add 172.16.0.2/24 dev eth0

17

La gestion des namespaces par Linux
Namespaces utilisateur

Création d’un nouveau namespace utilisateur
Peut être réalisé sans droits particuliers

user@vm0 $ unshare --user --map-root-user

root@vm0 $ brctl addbr br0

add bridge failed: Operation not permitted

Pas de d’accès privilégiés à des namespaces créés par un autre user namespace !

user@vm0 $ unshare --user --map-root-user --net

root@vm0 $ brctl addbr br0 # OK

18

La gestion des namespaces par Linux
Namespaces utilisateur

Correspondance entre UIDs dans les namespaces parent et fils

$ cat /proc/self/uid_map

0 1000 1

Possibilités de définir plusieurs lignes
Chacune contient trois valeurs:

UID de départ dans le namespace fils
UID de départ dans le namespace parent
Nombre d’UIDs consécutifs

Cas d’un utilisateur non-privilégié dans le namespace parent
Uniquement possible d’assigner son UID à un unique UID du namespace fils

19

La gestion des namespaces par Linux
Namespaces utilisateur

Plus de droits possibles grâce la commande setuid newuidmap
Configurée par un administrateur dans /etc/subuid
Autorise à utiliser une plage d’UID parent

$ cat /etc/subuid

diakhate:100000:65536

$ newuidmap [pid] 0 1000 1 1 100000 65536

$ cat /proc/[pid]/uid_map

0 1000 1

1 100000 65536

20

Les conteneurs: notion aux contours variables
Isolation (contain)

Groupes de processus isolés les uns des autres et du reste de l’OS

Différents mécanismes et niveaux d’isolation

Interfaces de l’OS

Namespaces (et capabilities)
Vision d’un OS partiellement ou totalement indépendant
Prévention des interactions avec les objets hors du conteneurs
Elevation de privilège restreinte au conteneur

Ressources matérielles disponibles

Control Groups
CPU: sous-ensemble des CPUs, QoS …
Mémoire: quantité, zones NUMA …
Périphériques: restrictions des périphériques utilisables …
I/O: QoS, quotas …

21

Les conteneurs: notion aux contours variables
Format de transport interoperable (conteneur)

22

Les conteneurs: notion aux contours variables
Format de transport interoperable (conteneur)

23

Les conteneurs: notion aux contours variables
Format de transport interoperable (conteneur)

Transport facile d’une application d’un serveur à lautre
Fonctionne à l’identique sur:

Un laptop de développement
De mutliples serveurs en production

Format contenant l’ensemble des données nécessaires
Fichers de l’application (exécutables, …)
Methode de lancement de l’application
Établissement de correspondances entre ressources virtuelles et hôtes

Ex: Identifiant de port dans un conteneur -> identifiant port hôte

24

Les conteneurs: notion aux contours variables
Premières formes de conteneurs: isolation

Objectif: machines virtuelles plus légères
Plus rapide à démarrer
Plus dense
Un système complet par conteneur

init/systemd
Démons traditionnels (SSH)

Exemples:
OpenVZ (2005)

Nécessite un noyau Linux patché
Adopté par des fournisseurs d’hébergement en ligne
Moins coûteux que des machines virtuelles

LXC (2008)
Basé sur les namespaces introduits progressivement dans Linux
Adoption relativement faible initialement
Support des namespaces incomplet
Gain insuffisant par rapport aux VMs

25

Les conteneurs: notion aux contours variables
Docker (2013): conteneurs transportables

Empaquete une unique application (souvent un unique processus)
Inclus toutes les dépendances

Recette de construction de conteneurs
Génération reproductible
Peut être associée au code source de l’application

Base de registre de conteneurs
Push/Pull
Recherche d’applications containerisée

Execution à l’identique sur tout type de machine

26

Architecture de Docker
Une application client/serveur

Écrite en langage go
La CLI (docker run/build …) communique avec un démon docker

API REST (socket Unix local ou TCP)
Utilisation reservée à un utilisateur privilégié

L’accès à ces commandes équivaut à être root sur le machine hôte

27

Images Docker
Données et con�guration permettant de créer un conteneur

Données: système de fichiers root du conteneur
Configuration:

Méta-données: Auteur, labels, date de création, etc.
Commande à exécuter pour lancer le conteneur
Variables d’environnement à positionner
Ports à rendre accessibles
etc.

28

Images Docker
Empilement de couches (layers)

Chaque couche ajoute/modifie/supprime données ou configuration
Partage possible de couches entre plusieurs images
Permet de créer des couches communes réutilisables
Spécialisation progressive
Découple la gestion de différents aspects

OS de base
Dépendances communes à une classe d’application
Application
Configuration de l’application

29

Images Docker
Exemples de couches pour une application Web Java

OS de base (ex: Ubuntu)
Personnalisation de la distribution par l’entreprise
Runtime Java
Tomcat
Dépendances de l’application
Code et données de l’application
Configuration de l’application

30

Conteneurs et images
Deux concepts distincts

Une image est un modèle
Elle permet d’instancier un nombre illimité de conteneurs
Chaque conteneur correspond à un ensemble de processus partageant

Espaces de nommages
Système de fichier construit à partir de l’image

Fonctionnement en mode copy-on-write
Évite de copier l’image complète pour lancer un conteneur
Couches de l’image utilisées en lecture seule
Ajout d’une couche supplémentaire modifiable

31

Conteneurs et images

32

Conteneurs et images

33

Lancement de conteneurs
Syntaxe ligne de commande

Commande docker run
Instancie un conteneur à partir d’une image

Namespaces, rootfs, couche modifiable, isolation …
Exécute une commande dans cet environnement

Commande par défaut spécifiée dans les meta-données
Commande passée en ligne de commande

Arrêt du conteneur quand la commande se termine

34

Lancement de conteneurs
Exemple

$ docker run -i -t ubuntu cat /etc/os-release

Unable to find image 'ubuntu:latest' locally

latest: Pulling from library/ubuntu

32802c0cfa4d: Pull complete

da1315cffa03: Pull complete

fa83472a3562: Pull complete

f85999a86bef: Pull complete

Digest: sha256:6d0e0c26489e33f5a6f0020edface2727db9489744ecc9b4f50c7fa671f23c49

Status: Downloaded newer image for ubuntu:latest

NAME="Ubuntu"

VERSION="18.04.1 LTS (Bionic Beaver)"

ID=ubuntu

[...]

$

-i: Redirige stdin dans le conteneur
-t: Alloue un pseudo-terminal
ubuntu: Nom de l’image de conteneur

35

Lancement de conteneurs
Récupération de l’image

Initialement l’image ubuntu n’est pas stockée localement
Récupération dans une base de registre
Stockage local pour les futures utilisations

ubuntu fait référence à:
l’image ubuntu
dans la bibliothèque d’image officielle (library)
dans la base de registre DockerHub (docker.io)
avec le version latest

Equivalent à: docker.io/library/ubuntu:latest
La bibliothèque DockerHub contient

Des images boites à outil tel que busybox
Des images de distributions Linux de base
De nombreux composants standards tel que httpd, nginx, mysql, redis …
Visible avec un navigateur sur https://hub.docker.com/
En ligne de commande avec docker search

36

https://hub.docker.com/

Lancement de conteneurs
Exemples

La commande docker pull permet de récupérer manuellement une image

$ docker pull centos

$ docker pull docker.io/library/fedora:27

$ docker pull nvcr.io/hpc/namd:2.13b2-singlenode

Lister les images stockées localement

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

centos latest 1e1148e4cc2c 3 days ago 202MB

ubuntu latest 93fd78260bd1 2 weeks ago 86.2MB

nvcr.io/hpc/namd 2.13b2-singlenode 5375a283a442 4 weeks ago 366MB

fedora 27 7a2e85963474 3 months ago 236MB

Une image locale est référençable par son identifiant

$ docker run -it 93fd 37

Lancement de conteneurs
Gestion des conteneurs instanciés

La commande docker run est une commande cliente de dockerd
Les processus du conteneur sont exécutés par le démon docker
Redirection des E/S standard vers le client

root 8663 S 09:16 0:00 bash

root 12212 Sl+ 11:06 0:00 _ docker run -ti ubuntu

[..]

root 8469 Ssl 09:08 0:48 /usr/bin/dockerd -H unix://

root 8470 Ssl 09:08 0:27 /usr/bin/containerd

root 12230 Sl 11:06 0:00 _ containerd-shim -namespace moby -wo [...]

root 12247 Ss+ 11:06 0:00 _ /bin/bash

Lancement du conteneur en arrière plan: docker run -d
Sorties standard collectées par dockerd
^P^X: se détacher d’un conteneur lancé en interactif

Alternative: tuer le client docker

38

Lancement de conteneurs
Gestion des conteneurs instanciés

Lister les conteneurs

$ docker ps -a # Inclure les conteneurs terminés

CONTAINER ID IMAGE COMMAND STATUS PORTS NAMES

72a936f72eae jpetazzo/clock "/bin/sh Up 39 seconds zen_archimedes

75ad68b88272 ubuntu "/bin/bash" Exited (0) clever_nightingale

05a16ca917ac httpd "httpd-for Exited (0) priceless_montalcini

$ docker ps -l # Dernier conteneur lancé

$ docker ps -ql # ID du dernier conteneur lancé

Un conteneur peut être référencé par son ID ou son nom
Nom par défaut ([adjectif]_[hacker ou scientifique])
Spécifiable à la création du conteneur avec - -name

39

Lancement de conteneurs
Gestion des conteneurs instanciés

S’attacher à un conteneur en arrière plan

$ docker attach zen_archimedes

Afficher les logs d’un conteneur

$ docker logs 72a936f72eae

Stockés par dockerd via différents drivers
json-file (par défaut), journald, gelf (intégration à logstash) …
Seuls json-file et journald permettent l’utilisation de docker logs

Configurable globalement ou par conteneur

$ docker run --log-driver=json-file --log-opt max-size=10m --log-opt max-file=3 [...]

$ docker run --log-driver=gelf --log-opt=gelf-address=udp://elasticsearch:12201 [...]

40

Lancement de conteneurs
Gestion des conteneurs instanciés

Se connecter à un conteneur
Pas besoin de démon SSH
Lancement d’un processus dans les mêmes namespaces que le conteneur

$ docker exec -ti [container id] /bin/bash

Equivalent à la commande nsenter

$ nsenter -a -t [container process pid] /bin/bash

nsenter permet de choisir les namespaces rejoints

Utile pour exécuter une commande inexistante dans le conteneur

A réserver à des fins de mise au point / debug

Lorsque les logs et métriques collectées ne donnent pas suffisament
d’information
Automatiser la construction et déploiement de conteneurs 41

Lancement de conteneurs
Gestion des conteneurs instanciés

Par défaut un conteneur s’arrête à la terminaison de la commande exécutée
Tuer un conteneur:

$ docker stop 72a936f72eae # SIGTERM puis SIGKILL

$ docker kill zen_archimedes # SIGKILL

Relancer un conteneur arrêté:

$ docker start [-a] 72a936f72eae

Relance la commande exécutée à la création du conteneur
La couche de stockage modifiable est réutilisée
Les nouvelles logs sont écrites à la suite des précédentes

42

Lancement de conteneurs
Gestion de la couche modi�able

Lister les différences contenues dans la couche modifiable

$ docker diff [container id]

/var

C /var/lib

C /var/lib/apt

C /var/lib/apt/lists

A /var/lib/apt/lists/security.ubuntu.com_ubuntu_dists_bionic-security_InRelease

[...]

43

Lancement de conteneurs
Gestion de la couche modi�able

Sauvegarder la couche modifiable pour créer une nouvelle image
Pas la manière recommandée de créer des images

$ docker commit 0d3652f5973e diakhate/myimage:v2

Possibilité de pousser ses propres conteneurs sur DockerHub
Règle de nommage: [login]/[container_name]:[tag]

$ docker login

$ docker push diakhate/myimage:v2

Note sur les tags de version (ici v2)
Pas de sémantique particulière, y compris le tag latest

Simple tag par défaut à la création/selection d’une image
Une image peut avoir plusieurs tag

$ docker tag myimage:v3 diakhate/myimage:latest

44

Lancement de conteneurs
Gestion de la couche modi�able

Nettoyer les données inutilisées ou en cache
Par défaut des données s’accumulent à chaque lancement de conteneur

$ docker container rm [container id]

$ docker container prune # Conteneurs arrêtés

$ docker image rm [image id]

$ docker image prune # Images inutilisées

$ docker system prune # Nettoyage complet

45

Implémentation des couches d’images sous Linux
Le système de �chiers overlay

Capable de combiner les données de plusieurs répertoires indépendants

N répertoires read-only (lowerdir)
1 répertoire modifiable (upperdir)
1 répertoire temporaire (workdir, doit être dans le même FS que upperdir)

Utilisation par docker

$ mount -t overlay overlay -o \

 lowerdir=/var/lib/docker/overlay2/[layer id0]/diff:\

 /var/lib/docker/overlay2/[layer id1]/diff:\

 /var/lib/docker/overlay2/[layer id2]/diff:\

 upperdir=/var/lib/docker/overlay2/[layer id3]/diff,\

 workdir=/var/lib/docker/overlay2/[layer id3]/work \

 /var/lib/docker/overlay2/[layer id3]/merged

46

Implémentation des couches d’images sous Linux
Le système de �chiers overlay

Fonctionnement
Ouverture d’un fichier en lecture

Parcours en profondeur des couches d’image jusqu’à trouver le fichier
Ouverture d’un fichier en écriture

Si le fichier est dans la couche modifiable, ouverture de ce fichier
Sinon copie du fichier depuis la couche précédente le contenant

copy up: potentiellement coûteux
Si aucune couche ne le contient, création dans la couche modifiable

Suppression d’un fichier
Création d’un fichier spécial dans la couche modifiable
Masque les fichiers des couches suivantes

47

Lancement de conteneurs
Gestion du stockage persistent

Éviter d’écrire dans la couche modifiable
Performances sub-obptimales à cause du copy-on-write
Séparer l’application de ses données persistentes
Recréer le conteneur sans perdre les données

Conteneur jetable
Mise à jour en relançant une nouvelle version de l’image
Exemple: conteneur de base de données

Ne pas stocker de secrets dans une image
Éviter une fuite accidentelle

48

Lancement de conteneurs
Volumes

Espace persistent attaché à un ou plusieurs conteneurs
Permet de partager un dossier entre plusieurs conteneurs

Simultanés ou successifs (mise à jour)
Offre les performances natives du FS sous-jacent

Pas de copy-on-write
Stockage géré par docker

Plugins permettant de gérer divers systèmes de stockage
Création d’un volume

$ docker volume create dbvolume

$ docker volume ls

$ docker run -v dbvolume:/var/libmysql --name mysql57 mysql:5.7

$ docker run --volume-from mysql57 --name mysql80 mysql:8.0

49

Lancement de conteneurs
Réseau

Docker gère différents plugin réseaux.

Les plugins de base incluent:

null
bridge (par défaut)
host
container
macvlan

L’option - - net permet de selectionner un plugin au lancement

50

Lancement de conteneurs
Réseau null

Pas de réseau disponible dans le conteneur
Seule l’interface lo est présente

Interface propre au conteneur
Ne permet de communiquer qu’avec les autres processus du conteneur

Impossibilité de communiquer avec l’extérieur
Permet d’isoler un conteneur pour raison de sécurité par exemple

51

Lancement de conteneurs
Réseau bridge

Le conteneur reçoit une interface lo et eth0
eth0 est implémentée par une paire veth
L’autre côté de la paire est connectée à un bridge géré par docker

Par défaut docker0
Son IP est attribuée dans un subnet privé interne au bridge
Le traffic est routé via du NAT

Règle iptables MASQUERADE en sortie (~équivalent SNAT)
Règle iptables DNAT en entrée

Le conteneur peut mettre en place ses propres configuration réseau
Routes
Regles IPTables
etc.

52

Lancement de conteneurs
Réseau bridge

Création de réseaux additionnels

$ docker network create mynet

Lister les différents réseaux

$ docker network list

NETWORK ID NAME DRIVER SCOPE

2c98279bf33c mynet bridge local

[...]

Chaque réseau bridge correspond à un périphérique bridge hôte

$ ip a

[...]

br-2c98279bf33c: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state

link/ether 02:42:9a:87:0e:82 brd ff:ff:ff:ff:ff:ff

inet 172.18.0.1/16 brd 172.18.255.255 scope global br-2c98279bf33c 53

Lancement de conteneurs
Réseau bridge

Exposition de port
Les IP alloués au conteneur sont privées
Accessible uniquement depuis l’hôte

Interface bridge docker0
Des ports peuvent être redirigés de l’hôte vers un conteneur
Accessible depuis l’exterieur via l’IP hôte

$ docker run -d -p 8080:80 httpd

$ docker ps

CONTAINER ID IMAGE COMMAND STATUS PORTS NAMES

8ac00c87cca4 httpd "httpd-fore... Up 4 seconds 0.0.0.0:8080->80/tcp cranky_darwin

$ curl localhost:8080

<html><body><h1>It works!</h1></body></html>

54

Lancement de conteneurs
Réseau bridge

Défintion de noms DNS dynamiques
Au sein d’un réseau
Basés sur le nom du conteneur

$ docker run -d --net mynet --name web httpd

Les autres conteneurs du réseau pourront accéder via les adresses
web
web.mynet

Permet de découvrir l’adresse des services dynamiquement
Un service par conteneur

Utilisation d’une adresse différente du nom du conteneur avec l’option - -net-alias

55

Lancement de conteneurs
Réseau host

Aucune isolation réseau n’est appliquée au conteneur
Accès direct aux interfaces réseau de l’hôte
Peut s’attacher à n’importe quel port réseau
Performances natives

Pas de traversée de veth, bridge etc.
Pas de traduction d’adresse via IPTables

La configuration des interfaces reste maîtrisée par l’hôte

56

Lancement de conteneurs
Réseau container

Le conteneur partage le réseau d’un autre conteneur
Même namespace réseau
Mêmes interfaces

Communication possible à travers l’interface lo
Partage les interfaces, routes, règles IPtables etc.

57

Construction d’images
Docker�les

Recette de construction d’image
Suite d’instructions indiquant

Comment construire l’image
Comment lancer un conteneur à partir de l’image

Commande à exécuter
Ports à exposer
Volumes à monter

Un Dockerfile est associé à un contexte
Répertoire contenant le Dockerfile
Peut contenir des fichiers nécessaire à la construction

58

Construction d’images
Exemple de Docker�le

Fichier Dockerfile simple

FROM ubuntu

RUN apt-get update

RUN apt-get install -y cowsay

CMD ["/usr/games/cowsay", "Salut", "!"]

FROM: image à utiliser pour commencer la construction
RUN: commande (non-interactive) exécutée pour la construction
CMD: commande par défaut lancée à l’exécution du conteneur

59

Construction d’images
Dans le répertoire contenant (uniquement) le Dockerfile

$ docker build -t cowsay .

Sending build context to Docker daemon 2.048kB

Step 1/4 : FROM ubuntu

---> 93fd78260bd1

Step 2/4 : RUN apt-get update

---> Running in 74bfed125b00

[...] # Sorties de la commande apt-get update

Removing intermediate container 74bfed125b00

---> ffb71bf8b10a

[...] # Sorties de la commande apt-get install -y cowsay

---> Running in 9fed24d532fb

Removing intermediate container 9fed24d532fb

---> f7af17acd5c1

Step 4/4 : CMD ['/usr/games/cowsay', 'Salut', '!']

---> Running in f978d29bf5a6

Removing intermediate container f978d29bf5a6

---> b65d477ae004

Successfully built b65d477ae004

Successfully tagged cowsay:latest

60

Construction d’images
Étapes de la construction

Sending build context to Docker daemon 2.048kB

Le contexte de construction
Répertoire passé en argument à docker build
Le répertoire complet est envoyé au démon docker
Permet de lancer une construction à distance
Ne pas y stocker des fichiers inutiles

61

Construction d’images
Étapes de la construction

Step 2/4 : RUN apt-get update

 ---> Running in 74bfed125b00

[...] # Sorties de la commande apt-get update

Removing intermediate container 74bfed125b00

 ---> ffb71bf8b10a

Un conteneur (74bfed125b00) est créé à partir de l’image de base
La commande apt-get update y est exécutée
Le conteneur est sauvegardé dans l’image ffb71bf8b10a
Le conteneur temporaire (74bfed125b00) est supprimé
L’image ffb71bf8b10a sera utilisée pour l’étape suivante
Il peut être utile de limiter le nombre de couches

Notamment images déployées en production sur plusieurs hôtes
Regrouper plusieurs lignes RUN avec des ‘&&’

62

Construction d’images
Étapes de la construction

Visualisation avec la commande docker history

$ docker history cowsay

IMAGE CREATED CREATED BY

3b85d6a31aa3 24 minutes ago /bin/sh -c #(nop) CMD ["/usr/games/cowsay" …

f7af17acd5c1 27 minutes ago |0 /bin/sh -c apt-get install -y cowsay

ffb71bf8b10a 27 minutes ago |0 /bin/sh -c apt-get update

93fd78260bd1 2 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"]

<missing> 2 weeks ago /bin/sh -c mkdir -p /run/systemd && echo 'do…

<missing> 2 weeks ago /bin/sh -c rm -rf /var/lib/apt/lists/*

<missing> 2 weeks ago /bin/sh -c set -xe && echo '#!/bin/sh' > /…

<missing> 2 weeks ago /bin/sh -c #(nop) ADD file:39e5bc157a8be63bb…

63

Construction d’images
Étapes de la construction

Mise en cache de chaque image intermédiaire
Si on relance la même construction le résultat est instantanné
Cache basé sur les chaînes de caractère du Dockerfile
Les commandes suivantes sont différentes pour Docker

 RUN apt-get install httpd nginx

 RUN apt-get install nginx httpd

Il peut parfois être utile de s’affranchir du cache

 RUN apt-get update

Les paquets ne sont jamais mis à jour après la premiere exécution
docker build –no-cache

64

Construction d’images
Résultat

$ docker run -ti cowsay

< Salut ! >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

$ docker run -ti cowsay /usr/games/cowsay Bye !

< Bye ! >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||
65

Construction d’images
La directive ENTRYPOINT

Définit une commande par défaut (comme CMD)
Différence: traitement des arguments passés au lancement du conteneur

Complète la commande ENTRYPOINT au lieu de la remplacer
CMD peut être utilisé simultanément

Correspond aux arguments par défaut
Exemple

FROM ubuntu

RUN apt-get update

RUN apt-get install -y cowsay

ENTRYPOINT ["/usr/games/cowsay"]

CMD ["Salut !"]

66

Construction d’images
Résultat

docker run -ti cowsay-ep

< Salut ! >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

$ docker run -ti cowsay-ep Cool !

< Cool ! >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||
67

Construction d’images
La directive EXPOSE

EXPOSE 80

EXPOSE 53/udp

Indique les ports à rendre accessible depuis l’extérieur
Tous les ports sont privés par défaut
La directive EXPOSE ne fait que donner une information
Lancement du conteneur avec

$ docker run -P -it container

Alloue automatiquement des ports hôte pour chaque port exposé
docker ps ou docker inspect permettent de connaître les ports attribués

$ docker inspect 2e66 --format \

 '{{(index (index .NetworkSettings.Ports "80/tcp") 0).HostPort}}'

32775

68

Construction d’images
Les directives COPY et ADD

COPY . /src

Copie depuis le répertoire contexte vers un répertoire cible du conteneur
Compatible avec la mise en cache des couches
Verifie si le fichier a changé

Empêche toute copie hors du répertoire (via ..)

ADD [url] ./src

ADD ./data.tar ./src

Similaire à COPY
Capable de récupérer des fichiers distants

Pas de mise en cache possible
Décompresser des archives

69

Construction d’images
La directive VOLUME

VOLUME /var/lib/mysql

Crée automatiquement un volume (nommé aléatoirement) au lancement du
conteneur

$ docker volume list

DRIVER VOLUME NAME

local 88e7d02e4f3688db2eccb02081f8affaca10a0bf82c16f8f3d504bd2b29c3946

local 52214d63b2487141350a425136cc6b63e296dda75aab17376533561286cbfe88

local fc71fd0362dfd7b006ff8f223676a26fba175157c2cbf02ad7aa6833ec045ef9

L’utilisateur peut toujours spécifier un volume spécifique avec -v

$ docker run -ti -v myvolume:/toto cowsay-ep /bin/bash

70

Construction d’images
La directive ENV

ENV HTTP_PROXY http://webproxy.mycompany.com:3128

ENV WEBAPP_PORT 8080

Positionne des variables d’environnement à l’exécution de commandes dans le
conteneur
Possibilité de les surcharger au lancement (ou d’en définir d’autres)

docker run -e WEBAPP_PORT=8000

71

Construction d’images
Construction multi-étapes

Compilation à l’intérieur d’un conteneur
Permet de compiler son application de façon reproductible
Inclusion des dépendances de compilation au sein du conteneur
Générer une image de conteneur pour l’exécution

Contenant uniquement les dépendances d’exécution
Supprimer des fichiers/paquets ne sert à rien

Crée une nouvelle couche qui masque les fichiers
La couche précédente les contient toujours

Utilisation de:
FROM image AS: nommage d’une étape intermédiaire
COPY –from=[image]: copie de fichier d’une image à lautre

72

Construction d’images
Construction multi-étapes

Exemple:

FROM ubuntu AS compiler

RUN apt-get update

RUN apt-get install -y build-essential

ADD appsrc.tar /

RUN make -C app

FROM ubuntu

COPY --from=compiler /app/bin/app.exe /app.exe

CMD /app.exe

73

Composition de conteneurs
Docker compose

Outil externe à docker (ancienemment nommé fig)
Ecrit en python

Lancement reproductible de plusieurs conteneurs formant une application
Workflow

Inclure un ficher docker-compose.yml dans son code source
Cloner le dépot de code
Démarrer l’application multi-conteneurs

$ docker compose up

74

Exemple: Wordpress

version: '3.3'

services:

 db:

 image: mysql:5.7

 volumes:

 - db_data:/var/lib/mysql

 restart: always

 environment:

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpress

 MYSQL_PASSWORD: wordpress

 wordpress:

 depends_on:

 - db

 image: wordpress:latest

 ports:

 - "8000:80"

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpress

 WORDPRESS_DB_PASSWORD: wordpress

volumes:

 db_data: 75

Composition de conteneurs
Syntaxe Compose

Sections
version: indique la version de format de fichier Compose

Les versions plus récentes supportent plus de fonctionnaliés
services: images de conteneurs à exécuter

image: tag d’une image locale ou d’un d’épot
build: chemin vers un Dockerfile
Options de lancement du conteneur (ports, volumes, variables, …)

networks: optionnel, par défaut utilisation d’un réseau privé à chaque
déploiement
volumes: optionnel, définit des volumes utilisés par les conteneurs

Compose réutilise les mêmes volumes lorsque l’on relance l’application

76

Composition de conteneurs
Quelques commandes utiles

Choisir un nom de projet unique (par defaut: nom du répertoire)

$ docker-compose -p myproject_dev up

Construire les images au lancement de la pile de conteneurs

$ docker-compose up --build

Lister les conteneurs de la pile

$ docker-compose ps

77

Composition de conteneurs
Quelques commandes utiles

Tuer les conteneurs de la pile

$ docker-compose kill

Supprimer les conteneurs

$ docker-compose rm

Tout nettoyer

$ docker-compose down -v # Y compris les volumes

78

Merci de votre attention !
Questions ?

79

80

