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Uncertainty Sources

Epistemic Uncertainty

• Lack of knowledge about, say, the appropriate value to use for a quantity, or the proper
model form to use.
”Reducible uncertainty” : can be reduced through increased understanding (research) or
more, relevant data.

Aleatory Uncertainty

• ”Alea” = Latin for ”die” ; Latin aleator = ”dice player.”
Inherent randomness, intrinsic variability.
”Irreducible uncertainty” : cannot be reduced by additional data.
Usually modeled with probability distributions.
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Uncertainty Quantification : Some facts

• UQ in computational science is the formal characterization, propagation, aggregation, comprehension, and
communication of aleatory (variability) and epistemic (incomplete knowledge) uncertainties.

E.g., demand fluctuations in a power grid are aleatory uncertainties.
E.g., incomplete knowledge about the future (scenarios uncertainty), the validity of models, and inadequate

”statistics” are epistemic uncertainties.

• A huge range of technical issues arise in the Modeling & Simulation (M&S) components of problem definition and

execution phases.

• Another huge range of technical issues arises in the delivery phase, especially in high-risk decision environments.

• ”Probability” is the main foundation for current ”quantification”.

UQ impact on HPC

• Any large-scale computational problem’s computing requirements increase (usually significantly) with UQ.
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"Degrees of Goodness"

• When we use experimental results (such as property values) in an analytical
solution, we should consider "how good" the data are and what influence that degree of

goodness has on the interpretation and usefulness of the solution

• When we compare model predictions with experimental data, as in a validation
process, we should consider the degree of goodness of the model results and the

degree of goodness of the data.

P. Dossantos-Uzarralde Covariance matrices comparison 5 / 51



Transposition to the true life ?
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Real Physical Problem

11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000
Rb85 (n,2n) cross section

Energy (MeV)

C
ro

ss
 s

ec
tio

n 
(m

b)

AUB74
ARK71
LRL60
LAS61
IRK65
HAM76
HAM68
TUR68
LND79
KIG85
JAE93
RBZ62
DEB67
LOU73
IFJ76
AEP90

Evaluation of nuclear cross sections. Experimental Data .
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Context: evaluation
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Find the good analytical model
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Context: evaluation and covariance matrix
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Find the model with the associated uncertainties estimations
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Model

What is the model ?
γ, α, β, xn, ...

Incident
particle

Target
nucleus
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Shrödinger’s Equation

Cross sections Evaluation

∇2 ψ ( ~r ) +
2. m
~2 .( E − U ( r ,E)).ψ(~r) = 0

position energy radial coordinate of ~r

wave function of the reduced mass potential created by

the incident particle of the system the nucleus

{neutron + nucleus}
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Potentiel Optique

U(r ,E) = −VD(r ,E)− iWD(r ,E) −VS(r ,E)− iWS(r ,E) +VSO(r ,E) + iWSO(r ,E)

volume surface spin-orbite

∀j ∈ {D,S,SO}

Vj (r ,E) = Vj (E) .g(r , RVj , aVj ) and Wj (r ,E) = Wj (E) .g(r , RWj , aWj )

Paramètres du modèle optique
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Paramètres du modèle optique

18 paramètres: p(E)
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Objectives

Introduce

• Challenges in UQ Science
• Various mathematical techniques

Convey

• To advance the application of mathematics and computational science to engineering,
industry, science, and societ
• To promote research that will lead to effective new mathematical and computational
methods and techniques for science, engineering, industry, and society
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Outline

1 Taylor Series Method

2 Monte Carlo Method

3 Global Sensitivity Analysis
Sobol indices
Introduction to Chaos Polynomial
Quasi-Monte Carlo Application

4 Least-Square vs Bayesian inference

5 Data learning application

6 Metric on matrix space

7 Bootstrap utility
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Taylor Series Method

First order Taylor’s development.

The Taylor series method is to approximate fj by a linear function. The linearization greatly
simplifies the error analysis, but at the expense of introducing an approximation error.

Yj ≈ fj (µX
1 , . . . , µ

X
p ) +

p∑
i=1

(
∂fj
∂Xi

(µX
1 , . . . , µ

X
p )

)(
Xi − µX

i

)
. (1)

• Mean Value, Variance, Covariance :

µY
j ≈ fj (µX

1 , . . . , µ
X
p ), σY

jj ≈
∑

i

∑
i′

∂fj
∂Xi

∂fj
∂Xi′

σX
ii′ , σ

Y
jj′ ≈

∑
i

∑
i′

∂fj
∂Xi

∂fj′
∂Xi′

σX
ii′ .

In a matrix form (Sandwich rule Cacuci[1981] ) as : VY = FX VX FX
T ,

where VX here denotes the diagonal covariance matrix and FX the sensitivity matrix.
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Taylor Series Method

First order Taylor’s development.

• Results
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Taylor Series Method

Second order Taylor’s development
Goal : estimate how the second order affects the sensitivity of the results

Yj ≈ fj (µ
X
1 , . . . , µ

X
p ) +

p∑
i=1

(
∂fj
∂Xi

(µX
1 , . . . , µ

X
p )

)
(Xi − µ

X
i )

+
1

2

p∑
i=1

p∑
i′=1

(
∂2fj

∂Xi∂Xi′
(µX

1 , . . . , µ
X
p )

)
(Xi − µ

X
i )(Xi′ − µ

X
i′ ) (2)

Under the assumptions of independent parameters and continuous uniform distribution, the final
covariance Cov(Yj , Yj′ ) = σY

jj′ can be written:

σ
Y
jj′ =

p∑
i=1

∂fj
∂Xi

∂fj′

∂Xi
σ

X
ii +

1

4

p∑
i=1

∂2fj
∂X2

i

∂2fj′

∂X2
i

(
E
[

(Xi − µ
X
i )4
]
−
(
σ

X
ii

)2
)
.

Introducing the second derivatives and the 4th central moment diagonal matrix:

F2
X =

(
∂2fj
∂X2

i

)
1≤j≤g
1≤i≤p

QX =
(

QXij

)
1≤i≤p
1≤j≤p

=

{
0 si i 6= j
E
[

(Xi − µX
i )4
]

si i = j

The results above can be written in a matrix form as:

VY = FX VX FX
T +

1
4

F 2
X

(
QX − VX

2
)

F 2
X

T
(3)
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Monte Carlo Method

Outline

1 Taylor Series Method

2 Monte Carlo Method

3 Global Sensitivity Analysis
Sobol indices
Introduction to Chaos Polynomial
Quasi-Monte Carlo Application

4 Least-Square vs Bayesian inference

5 Data learning application

6 Metric on matrix space

7 Bootstrap utility
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Monte Carlo Method

Monte Carlo Method

Monte Carlo simulation is categorized as a sampling method because the inputs are randomly
generated from probability distributions.

• Uniform distribution
In the context of a comparison between both methods, we used the uniform distribution U(αi , βi )
as parameter probability function distribution (pdf).

fXi (x) =
1

βi − αi
I[αi ,βi ]

(x), I[αi ,βi ]
(x) =

{
0 si x /∈ [αi , βi ]
1 si x ∈ [αi , βi ]

• Independent Parameters
The pdf of the parameter vector X is the product of the marginal distributions fXi of each
parameters Xi :

fX =

p∏
i=1

fXi .
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Monte Carlo Method

Simulations Monte-Carlo

Parameters :

rV , aV , v1, v2, v3,w1,w2, rD , aD , d1, d2, d3, rSO , aSO , vSO1
, vSO2

,wSO1
et wSO2
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Monte Carlo Method

Monte Carlo Method

• Results
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Monte Carlo Method

Comparisons
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Monte Carlo Method
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Monte Carlo Method

Local Sensitivity Analysis
The aim of sensitivity analysis : estimate the rate of change in the model output with respect to
changes in model inputs - determine parameters for which it is important to have more accurate
values, and understanding the behavior of the system being modeled.

Pb : the method involves an expansion of model outputs in terms of small random perturbations
of model parameters.
• Different δxi were tested in the interval [0, αXi = ±5%].

• In this study, we use the normalized gradient
∂fj
∂Xi

µX
i

fj
.

Main limitation : require the perturbation terms be small.
These methods are in general difficult to apply along with the modeling of complex, nonlinear
systems.
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Global Sensitivity Analysis

Outline

1 Taylor Series Method

2 Monte Carlo Method

3 Global Sensitivity Analysis
Sobol indices
Introduction to Chaos Polynomial
Quasi-Monte Carlo Application

4 Least-Square vs Bayesian inference

5 Data learning application

6 Metric on matrix space

7 Bootstrap utility
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Global Sensitivity Analysis

Sensitivity Analysis

Purpose of Sensitivity Analysis (SA)

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical
model or system (numerical or otherwise) can be apportioned to different sources of un-
certainty in its inputs. The process of recalculating outcomes under alternative assump-
tions to determine the impact of variable under sensitivity analysis can be useful for a
range of purposes including :

• Testing the robustness of the results of a model or system in the presence of
uncertainty.

• Increased understanding of the relationships between input and output variables in
a system or model.

• Identifying model inputs that cause significant uncertainty in the output.

• Searching for errors in the model (by encountering unexpected relationships
between inputs and outputs).

• Model simplification - fixing model inputs that have no effect on the output, or
identifying and removing redundant parts of the model structure.

• Finding regions in the space of input factors for which the model output is either
maximum or minimum or meets some optimum criterion (see optimization and
Monte Carlo filtering).

• In case of calibrating models with large number of parameters, a primary
sensitivity test can ease the calibration stage by focusing on the sensitive
parameters. Not knowing the sensitivity of parameters can result in time being
uselessly spent on non-sensitive ones.[y in its inputs.

Example

Taking an example from economics, in any budgeting process there are always variables
that are uncertain. Future tax rates, interest rates, inflation rates, headcount, operating
expenses and other variables may not be known with great precision. Sensitivity analysis
answers the question, "if these deviate from expectations, what will the effect be (on the
business, model, system, or whatever is being analyzed), and which variables are causing
the largest deviations?"
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Global Sensitivity Analysis Sobol indices

Sobol Indices

• Let us assume the model function y = f (x1, . . . , xp), where x1, . . . , xp are independent
input factors. Whenever y = f (x1, x2, ..., xp) is integrable over [0, 1]p , y can be decomposed
(Sobol[1993]) as :

f (x1, . . . , xp) = f0 +

p∑
i=1

fi (xi ) +
∑

1≤i≤j≤p

fij (xi , xj ) + ...+ f1, ..., p(x1, . . . , xp)

with the classical property of orthogonality.
• Consider that the input parameters are independent random variables, the joint pdf of the

input factors is P(X1, X2, ..., Xp) =
∏p

i=1 p(Xi ).

E [f (X1, . . . , Xp)] =

∫
[0,1]p

(
f0 +

p∑
i=1

fi (Xi ) +
∑

1≤i≤j≤p

fij (Xi , Xj ) + ... + f12...p(X1, X2, ..., Xp)
) p∏

i=1

p(Xi ) dXi

V (Y ) = V (f (X1, . . . , Xk )) =

∫
[0,1]p

f 2(X1, . . . , Xk )

p∏
i=1

p(Xi )dXi − f 2
0

• First order Sobol index (Si ) gives the influence of each parameter taken alone.
Second order Sobol index (Sij ) a sensitivity measure due to the uncertainties

in the set of input parameters{i, j}.
Higher orders give mixed influence of parameters

Si =
V (E(Y |Xi ))

V (Y )
, Sij =

V (E [Y/Xi ,Xj ])− V (E [Y/Xi ])− V (E [Y/Xj ])

V (Y )
, Sijk , ...
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Global Sensitivity Analysis Introduction to Chaos Polynomial

Wiener-Askey Polynomial Chaos
The chaos expansion expresses the random process through a complete and orthogonal basis in
terms of random variables. Polynomial Chaos {PC} is restricted to second-order stochastic
processes, i.e. processes with finite second-order moments (Cameron, Martin[1947]).

• A second-order random process (L2) can be represented as :

θ(ω) =
∞∑

k=0

θk Ψk (ξ(ω)), ξ(ω) = {ξi (ω)}∞i=1 Wiener [1938]

- θk deterministic expansion coefficients,
- Ψk (ξ(ω)) random trial basis,
- Ψ′k s orthogonal polynomials from the Askey-scheme,
- {ξi (ω)}∞i=1 independent random variables.

• Generalized {PC} forms a complete orthonormal basis of the Hilbert space with the inner
product and the orthogonality relation.

• In pratical computations, the stochastic space must be truncated.
The total number of expansion terms P + 1 is determined by N (ξ(ω) = {ξi (ω)}N

i=1) and p,
which is the highest degree of the orthogonal polynomials :

θ(ω) =
P∑

k=0

θk Ψk (ξ(ω)) P + 1 =
(N + p)!

N!p!

• The combination of random vector and polynomials is carefully selected from the
distribution of the random input.
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Global Sensitivity Analysis Introduction to Chaos Polynomial

Sobol Indices Calculations
It is possible to approximately represent the random response of a system as a {PC} expansion.
Due to the orthogonality of the basis we can obtain the mean and the variance of the response

E [f (X)] = E [
∞∑

k=0

fk Ψk (X)] = f0, V [f (X)] = E

( ∞∑
k=0

fk Ψk (X)− f0

)2
 =

∞∑
k=1

f 2
k E

[
Ψ2

k (X)
]

• Expansion coefficients {fk}P−1
k=1 calculations:

< f (X)Ψk (X) >=<
∞∑
l=0

fl Ψl (X) Ψk (X) >=
∞∑
l=0

fl < Ψl (X) Ψk (X) >= fk < Ψ2
k (X) >

fk =
< f (X)Ψk (X) >

< Ψ2
k (X) >

• Variance calculation

Var [f (Xi1 , ...,Xis )] = E
[
(
∑

k∈Γi1,...,is
fk Ψk (X))2

]
=
∑

k∈Γi1,...,is
f 2
k E [Ψ2

k (X)]

• Sobol Indices Calculations : from the {PC} chaos representation we can reach the full list of
Sobol indices (Sudret[2006])

Si1,...,is =

∑
k∈Γi1,...,is

f 2
k E [Ψ2

k (X)]∑∞
k=1 f 2

k E [Ψ2
k (X)]
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Global Sensitivity Analysis Quasi-Monte Carlo Application

Quasi-Monte Carlo

Congruential Generator Halton Sequence

Curse of dimensionality Rate of convergence
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Least-Square vs Bayesian inference

Outline

1 Taylor Series Method

2 Monte Carlo Method

3 Global Sensitivity Analysis
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Introduction to Chaos Polynomial
Quasi-Monte Carlo Application

4 Least-Square vs Bayesian inference

5 Data learning application

6 Metric on matrix space

7 Bootstrap utility
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Least-Square vs Bayesian inference

Least Square

• The most probable probabilty density function is the Gaussian multivariate distribution :

fX (X) =
1

(2π)p/2 | VX |1/2
exp
(
−

1

2
(X − µ)T V−1

X (X − µ)

)

• VX : in a rigourous way, we introduce the parameters correlations
∗ VX obtained with a minimum chi-square estimation.

χ
2 =

1

N

N∑
i=1

(
σ

exp
i − σcalc

i

∆σ
exp
i

)2
.

• V : experimental covariances matrice
∗ σ

exp
i : no covariance estimation.

∗ introduce χ2 (generalized χ2 ) with experimental covariances :

χ
2 =

N∑
i,j=1

(
(σ

exp
i − σcalc

i ))(V−1)ij (σ
exp
j − σcalc

j ))

)

∗ Levenberg-Marquardt Minimization Algorithm (P. Dossantos-Uzarralde[2007])
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Least-Square vs Bayesian inference

Bayes inference
Principe Calibration par méthode Bayésienne

Choix du Jeu de données exp. Barres d’erreur- Dispersion des points exp.

• On the right, Bayesian Simulations.
Green : standard error obtained by least square optimisations - Brown : Bayesian optimisations - random parameter interval
± 1%, in yellow: random parameter interval± 0.5%.)

• Data are not explained by the models. Differents experiments give differents informations.P. Dossantos-Uzarralde Covariance matrices comparison 31 / 51



Data learning application
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Data learning application

Support Vector Machine
ω = (ω1, · · · , ωd ) ∈ Rd un vecteur de paramètres du modèle f model

ω0 le paramètre d’ordonnée à l’origine.

Problème de régression

On cherche une application linéaire f model (Epred ) = tωEpred +ω0 telle que pour tout point

d’apprentissage de Af , σ
exp
i soit le plus proche possible de f model (Eexp

i ).

Eexp
i (Eexp

i ∈ R) : vecteur caractérisant les valeurs des énergies. On pose cependant Eexp
i ∈ Rd

uniquement pour des besoins mathématiques.
< ., . > est le produit scalaire dans Rd .
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Data learning application

Support Vector Machine
Fonction de perte

∀ε ∈ R+, l(σexp
i , f model (Eexp

i )) = |σexp
i − f model (Eexp

i )|ε

=

{
0 si |σexp

i − f model (Eexp
i )| ≤ ε

|σexp
i − f model (Eexp

i )| − ε sinon

Cette fonction de perte est une norme L1 epsilon insensible, c’est-à-dire qu’elle ne pénalise pas
les mauvaises prédictions à epsilon près. Toutes les valeurs présentes dans le tube d’epsilon
sont alors déterminantes pour la régression, les autres valeurs sont pénalisées. En ulilisant cette
fonction de perte, on obtient le risque réel empirique suivant :

R̂Reel (f model ,Af ) =
1
m

m∑
i=1

l(σexp
i , f model

i ) =
1
m

m∑
i=1

|σexp
i − f model (Epred )|ε. (4)
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Data learning application

Support Vector Machine
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Data learning application

Support Vector Machine
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Data learning application

Support Vector Machine

Matrice de covariance "expérimentale" ΣF
(400, 400)
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Data learning application

Scoring Method
f eval
1 , . . . , f eval

n

Adequation to experimental data

n initial evaluations

n score evaluationss(f eval
1 , f exp), . . . , s(f eval

n , f exp)

Sort of the evaluations

according to the score values

f eval
(1) , . . . . . . . . . , f

eval
(n) n sorted evaluations

n1 evaluations

Empirical estimators

E
E1 E2

... EN

χ2

χ2

χ2 =
N∑

j=1

(
f eval(Ej )− f exp(Ej )

σexp
j

)2
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Data learning application

Score functions used

χ2 S(f eval
i , f exp) =

N∑
j=1

(
f eval
i (Ej )− f exp(Ej )

σexp
j

)2

BY S(f eval
i , f exp) =

N∑
j=1

(
f eval
i (Ej )− f exp(Ej )

σexp
j

)2

+

np∑
k=1

N∑
j=1

(
pi

k (Ej )− pk (Ej )

σparam
k (Ej )

)2

HRBC S(f eval
i , f exp) =

N∑
j=1

1I[f exp(Ej )−σ
exp
j ;f exp(Ej )+σ

exp
j ](f

eval
i (Ej ))

σexp
j

√
2π

exp

−1
2

(
f eval
i (Ej )− f exp(Ej )

σexp
j

)2


with 1IA(x) = 1 if x ∈ A
1IA(x) = 0 if x /∈ A
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Data learning application

Example : Covariance Matrice Estimator
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Metric on matrix space

Outline

1 Taylor Series Method

2 Monte Carlo Method

3 Global Sensitivity Analysis
Sobol indices
Introduction to Chaos Polynomial
Quasi-Monte Carlo Application

4 Least-Square vs Bayesian inference

5 Data learning application

6 Metric on matrix space

7 Bootstrap utility
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Metric on matrix space

Distance between matrices

Classical distance:
Frobenius norm

Quality of an estimation Σ̂ of Σ

dF (Σ̂,Σ) = ||Σ̂− Σ||F =

√
trace((Σ̂− Σ)t .(Σ̂− Σ))

Quality of the inverse Σ̂−1 for the estimation of Σ−1

dF (Σ̂−1,Σ−1) = ||Σ̂−1 − Σ−1||F
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Metric on matrix space

Distance between matrices

Entropy and Kullback-Leibler

Quality of an estimation Σ̂ of Σ

Entropy: dE (Σ̂,Σ) = tr(Σ̂.Σ−1)− log(det(Σ̂.Σ−1))− N

Quality of the inverse Σ̂−1 for the estimation of Σ−1

Kullback-Leibler: dK (Σ̂,Σ) = tr(Σ̂−1.Σ)− log(det(Σ̂−1.Σ))− N

James and Stein 1961, Estimation with quadratic loss, Proceedings of the Fourth Berkeley Symposium on Mathematical

Statistics and Probability.

Levina & al. 2008, Sparse estimation of large covariance matrices via a nested lasso penalty, The Annals of Applied Statistics.

Tumminello & al. 2007, Kullback-Leibler distance as a measure of the information filtered from multivariate data, Phys. Review E.
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Bootstrap utility

Outline

1 Taylor Series Method

2 Monte Carlo Method

3 Global Sensitivity Analysis
Sobol indices
Introduction to Chaos Polynomial
Quasi-Monte Carlo Application

4 Least-Square vs Bayesian inference

5 Data learning application

6 Metric on matrix space

7 Bootstrap utility
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Bootstrap utility

Bootstrap definition

What is Bootstrap
In statistics, bootstrapping can refer to any test or metric that relies on random sampling with
replacement. Bootstrapping allows assigning measures of accuracy (defined in terms of bias,
variance, confidence intervals, prediction error or some other such measure) to sample esti-
mates.
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Bootstrap utility

Bootstrap: general principle

X ∼ F
Σ = T (F )

what we want
unknown

(X1, ...,Xn) ∼ F⊗n, F̂ ≈ F

plug-in: Σ̂ = T (F̂ )

what we have
observed

(X∗1 , ...,X
∗
n )1 ∼ F̂⊗n

F̂∗1 ≈ F̂
Σ̂∗1 = T (F̂∗1)

what we do
resampling

Example:

(X1, . . . , Xn) = (1, 2, 3, 4, 5)

( or (X1, . . . , Xn) = n evaluations)

(X∗1 , . . . , X∗n )1 = (1, 3, 4, 3, 5)

(X∗1 , . . . , X∗n )2 = (4, 1, 2, 3, 4)

.

.

.

(X∗1 , . . . , X∗n )B = (5, 1, 3, 4, 2)
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Bootstrap: general principle
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plug-in: Σ̂ = T (F̂ )

what we have
observed

(X∗1 , ...,X
∗
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n )B ∼ F̂⊗n

F̂∗1 ≈ F̂
Σ̂∗1 = T (F̂∗1)

F̂∗B ≈ F̂
Σ̂∗B = T (F̂∗B)

what we do
resampling

Example:

(X1, . . . , Xn) = (1, 2, 3, 4, 5)

( or (X1, . . . , Xn) = n evaluations)

(X∗1 , . . . , X∗n )1 = (1, 3, 4, 3, 5)

(X∗1 , . . . , X∗n )2 = (4, 1, 2, 3, 4)

.

.

.

(X∗1 , . . . , X∗n )B = (5, 1, 3, 4, 2)

B resamplings allow statistics on the distribution of Σ̂:

ÎE(Σ̂), V̂ar(Σ̂), B̂ias(Σ̂),...
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.

.

.

(X∗1 , . . . , X∗n )B = (5, 1, 3, 4, 2)

B resamplings allow statistics on the distribution of Σ̂:

dE (Σ̂,Σ) ≈ d̂E (Σ̂,Σ) = 1
B

B∑
b=1

dE (Σ̂∗b, Σ̂) and dK (Σ̂,Σ) ≈ d̂K (Σ̂,Σ) = 1
B

B∑
b=1

dK (Σ̂∗b, Σ̂)
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dE (Σ̂∗b, Σ̂) and dK (Σ̂,Σ) ≈ d̂K (Σ̂,Σ) = 1
B

B∑
b=1

dK (Σ̂∗b, Σ̂)�� ��d̂E (Σ̂,Σ) and d̂K (Σ̂,Σ) are independant of the method used for the generation of Σ̂
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Bootstrap utility

Bootstrap: theoretical justification
Bickel and Freedman 1981

if
√

n(T (F̂ )− T (F ))
L−→ P then

√
n(T (F̂ ∗)− T (F̂ ))

L−→ P

X ∼ F

Σ = T (F )

what we want
unknown

(X1, ...,Xn) ∼ F⊗n, F̂ ≈ F

Σ̂ = T (F̂ )

what we have
observed

√
n(Σ̂− Σ)

L−→ P

(X∗1 , ...,X
∗
n )1 ∼ F̂⊗n , . . . , (X∗1 , ...,X

∗
n )B ∼ F̂⊗n

F̂∗1 ≈ F̂
Σ̂∗1 = T (F̂∗1)

F̂∗B ≈ F̂
Σ̂∗B = T (F̂∗B)

what we do
resampling

√
n(Σ̂∗1 − Σ̂)

L−→ P

Bickel and Freedman, Some asymptotic theory for the bootstrap, the Annals of Statistics, 1981.

Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1981.
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Bootstrap utility
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Bootstrap utility

Bootstrap: theoretical justification
Beran and Strivastava 1985

with F̂ the empirical CDF,
√

n(Σ̂− Σ)
L−→ N (0,Ω) and

√
n(Σ̂∗ − Σ̂)

L−→ N (0,Ω)

X ∼ F

Σ = T (F )

what we want
unknown

(X1, ...,Xn) ∼ F⊗n, F̂ ≈ F

Σ̂ = T (F̂ )

what we have
observed

√
n(Σ̂− Σ)

L−→ N (0,Ω)

(X∗1 , ...,X
∗
n )1 ∼ F̂⊗n , . . . , (X∗1 , ...,X

∗
n )B ∼ F̂⊗n

F̂∗1 ≈ F̂
Σ̂∗1 = T (F̂∗1)

F̂∗B ≈ F̂
Σ̂∗B = T (F̂∗B)

what we do
resampling

√
n(Σ̂∗1 − Σ̂)

L−→ N (0,Ω)

Beran and Srivastavia, Bootstrap tests and confidence region for functions of covariance matrix, The Annals of Statistics, 1985.
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Bootstrap utility

Bootstrap: theoretical justification
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√
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dE (Σ̂∗, Σ̂)

dE (Σ̂,Σ)

Beran and Srivastavia, Bootstrap tests and confidence region for functions of covariance matrix, The Annals of Statistics, 1985.
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Bootstrap utility

Bootstrap implementation
With scoring

f eval
1 , . . . , f eval

n

f eval∗
1 , . . . , f eval∗

n

f eval∗
(1) , . . . , f eval∗

(n)

b=1
. . .

draw with replacement

f eval∗
1 , . . . , f eval∗

n

f eval∗
(1) , . . . , f eval∗

(n)

Sort of the evaluations

b=B

according to the score values

n initial evaluations

B bootstrap
samples

+ +

n1 evaluations n1 evaluations

Σ̂∗1n1 Σ̂∗Bn1
B bootstrap

matrices
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With Brute Monte Carlo

f eval
1 , . . . , f eval

n

f eval∗
1 , . . . , f eval∗

n

b=1
. . .

draw with replacement

f eval∗
1 , . . . , f eval∗

n

b=B

+ +

n1 n1
evaluations evaluations

Σ̂∗1n1 Σ̂∗Bn1
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Bootstrap utility

Entropy and Kullback-Leibler versus n1

d̂E
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7

n1

d E
(Σ̂
,Σ
)

Bootstrap estimation of dE (Σ̂ ,Σ ) for Rb85 (n,2n) with B = 250

B
HRBC
Chi2
Brute MC

d̂K
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d K
(Σ̂
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Bootstrap estimation of dK (Σ̂,Σ ) for Rb85 (n,2n) with B = 250

BY
HRBC
Chi2
Brute MC

P. Dossantos-Uzarralde Covariance matrices comparison 48 / 51



Bootstrap utility

Entropy ratio and Kullback-Leibler ratio versus B
n1 = 625 Local scoring

dE (Σ̂,Σ)

for Rb85 (n,2n)
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Bootstrap utility

En. ratio and K-L ratio versus param. variation
B = 500,
n1 = 625 Local scoring Global scoring ((n,2n),(n,γ),(n,α))

dE (Σ̂,Σ)S

dE (Σ̂,Σ)MC
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Bootstrap utility
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