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Uncertainty Sources

Epistemic Uncertainty

® |ack of knowledge about, say, the appropriate value to use for a quantity, or the proper
model form to use.

"Reducible uncertainty” : can be reduced through increased understanding (research) or
more, relevant data.

Aleatory Uncertainty

® “Alea” = Latin for "die” ; Latin aleator = "dice player.”
Inherent randomness, intrinsic variability.

“Irreducible uncertainty” : cannot be reduced by additional data.
Usually modeled with probability distributions.
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Uncertainty Quantification : Some facts

° UQ in computational science is the formal characterization, propagation, aggregation, comprehension, and
communication of aleatory (variability) and epistemic (incomplete knowledge) uncertainties.

E.g., demand fluctuations in a power grid are aleatory uncertainties.

E.g., incomplete knowledge about the future (scenarios uncertainty), the validity of models, and inadequate
“statistics” are epistemic uncertainties.

® A huge range of technical issues arise in the Modeling & Simulation (M&S) components of problem definition and

execution phases.

® Another huge range of technical issues arises in the delivery phase, especially in high-risk decision environments.

® Probability” is the main foundation for current "quantification”.

UQ impact on HPC

®  Any large-scale computational problem’s computing requirements increase (usually significantly) with UQ.
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|
Problem

N measurements P = (fP(Eq), ..., [P(Epy))
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|
Problem

One possible model
N measurements P = (fP(Eq), ..., [P(Epy))
First set of input parameters: p' = (p](E1), ..., p), (En))

I (E)
f1eval ( EN)
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|
Problem

Two possible models
N measurements P = (fP(Eq), ..., [P(Epy))
Second set of input parameters: p* = (p%(Ey), ..., p5, (En))

£ (En)
£(E)
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|
Problem

N measurements P = (fP(Eq), ..., [P(Epy))
n sets of input parameters = n possible models
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"Degrees of Goodness"

® When we use experimental results (such as property values) in an analytical
solution, we should consider "how good" the data are and what influence that degree of
goodness has on the interpretation and usefulness of the solution

® When we compare model predictions with experimental data, as in a validation
process, we should consider the degree of goodness of the model results and the
degree of goodness of the data.
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Transposition to the true life ?
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Real Physical Problem
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Cross section (mb)

Context: evaluation
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]
Context: evaluation and covariance matrix
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Model

What is the model ?

v, o, B, XN, ...

%

o oo

\
-

Incident
particle

Target
nucleus
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|
Shrédinger’s Equation

Cross sections Evaluation

Ve (F)+

2 (E —[Ul(r.E)() =0
/ \\ \. T
position \ energy radial coordinate of ¥
wave fuhction of the reduced mass
the incident particle of the system

{neutron + nucleus}

P. Dossantos-Uzarralde Covariance matrices comparison 8/51



|
Potentiel Optique

U(r, E) = —VD(I’, E) = iWD(f', E) —Vs(f', E) = iWs(r, E) -I—Vso(f', E) + iWso(f', E)

/
/
V4

volume surface spin-orbite

vj € {D, S, SO}

Vi(r’ E) = VI(E) 'g(r7 RV/ ) an) and Wi(r? E) = VV/(E) .g(f, HW/ ; aw; )

Parametres du modeéle optique
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|
Potentiel Optique

U(r,E) = =Vp(r, E) — iWp(r,E) —Vs(r,E)— iWs(r,E) +Vso(r, E)+ iWso(r, E)

/
/
V4

voIL‘ere surface spin-orbite
vj e {D, S, SO}

Vi(r, E) = V(E) .9(r, Ry, @y) and W(r,E)=[W(E) .o(r, Rw . aw )

Parameétres du modele optique

18 paramétres: p(E)
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Objectives

Introduce

® Challenges in UQ Science
® Various mathematical techniques

Convey

® To advance the application of mathematics and computational science to engineering,
industry, science, and societ

® To promote research that will lead to effective new mathematical and computational
methods and techniques for science, engineering, industry, and society
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Outline

Taylor Series Method
Monte Carlo Method

Global Sensitivity Analysis
m Sobol indices
m Introduction to Chaos Polynomial
m Quasi-Monte Carlo Application

Least-Square vs Bayesian inference
Data learning application
@ Metric on matrix space

Bootstrap utility
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Outline

Taylor Series Method
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First order Taylor’s development.

The Taylor series method is to approximate f; by a linear function. The linearization greatly

simplifies the error analysis, but at the expense of introducing an approximation error.

Y i) +z( o)) (5= ).

® Mean Value, Variance, Covariance :

o o o ot x

T G szaxax % ZZaxax i~

In a matrix form (Sandwich rule Cacuci[1981] )as:  Vy = Fx Vx FXT,

where VX here denotes the diagonal covariance matrix and FX the sensitivity matrix.
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First order Taylor’s development.

® Results

Toral Cross Section
(barns)
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Taylor Series Method

Second order Taylor's development
Goal :

estimate how the second order affects the sensitivity of the results

Bf

X X

Y; f/(m,.,.,#p+z<ax ,.,.,#§)>(x,‘—u,-x)
p P < 32,

X X
Xi —
i axax,( “P)>( '

w)X — )
Under the assumptions of independent parameters and continuous uniform distribution, the final
covariance Cov(Y}, Yy) = aij, can be written

N =

i

(2)

P of ofy 1 Pl 8% 9Pfy
Y _ x 1 i 97
% = Z ax; ox Tt 2

X\4 X\ 2

< ox2 0x? (E[(X —u] = (o) )
= 1 i
Introducing the second derivatives and the 41 central moment diagonal matrix
o%f 0
F2 — Qx = (Qxj) 1<i<p =
=X (E)X >1</§g =X ( X")1§'5p {
1<i<

sii#j
1Zj<p E[(X"f"?()“] sii=j
The results above can be written in a matrix form as

&:
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Outline

Monte Carlo Method
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Monte Carlo Method

Monte Carlo simulation is categorized as a sampling method because the inputs are randomly
generated from probability distributions.
® Uniform distribution

In the context of a comparison between both methods, we used the uniform distribution 4/(«;, 5;)
as parameter probability function distribution (pdf).

i, (x) To 31 () Ty 31 (X) = { 0 six¢[a,f]

1
R 1 six € o, 8]
® |ndependent Parameters

The pdf of the parameter vector X is the product of the marginal distributions fx. of each
parameters X;:

<
Il
.:_o
X0
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Simulations Monte-Carlo
Parameters :
rv,ay, Vi, V2, V3, Wi, Wa, Ip, @p, dy, 0z, 03, 'so, aso; Vso,, Vs0, 5 Wso, et Wso,
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Monte Carlo Method

® Results

—— Total Cross Section
(barns)
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Comparisons

Monte Carlo Correlations
Sensitivity Method Correlations
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Monte Carlo Method
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Local Sensitivity Analysis

The aim of sensitivity analysis : estimate the rate of change in the model output with respect to
changes in model inputs - determine parameters for which it is important to have more accurate
values, and understanding the behavior of the system being modeled.

Pb : the method involves an expansion of model outputs in terms of small random perturbations
of model parameters.
o Different dx; were tested in the interval [0, ax, = +5%].
5 X
e In this study, we use the normalized gradient % B
L)
Main limitation : require the perturbation terms be small.
These methods are in general difficult to apply along with the modeling of complex, nonlinear
systems.

Total Cross Section

=\ E
——— aws
—-— avso

e 1
——— rws
—-— rvso
Vv E
—— w1
e Ws

1 - T - vso !

0.5% perturbation

relative sensitivities

N

3 4 5 6 7 8 9 10 11 12 13 14
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Outline

Global Sensitivity Analysis
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Sensitivity Analysis

Purpose of Sensitivity Analysis (SA)

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical
model or system (numerical or otherwise) can be apportioned to different sources of un-
certainty in its inputs. The process of recalculating outcomes under alternative assump-
tions to determine the impact of variable under sensitivity analysis can be useful for a
range of purposes including :

e Testing the robustness of the results of a model or system in the presence of
uncertainty.

e Increased understanding of the relationships between input and output variables in
a system or model.

o |dentifying model inputs that cause significant uncertainty in the output.

e Searching for errors in the model (by encountering unexpected relationships
between inputs and outputs).

o Model simplification - fixing model inputs that have no effect on the output, or
identifying and removing redundant parts of the model structure.

e Finding regions in the space of input factors for which the model output is either
maximum or minimum or meets some optimum criterion (see optimization and
Monte Carlo filtering).
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Sobol Indices

@® |et us assume the model function y = f(x1,..., Xp), where x4, ..., Xp are independent

input factors. Whenever y = f(xy, X2, ..., Xp) is integrable over [0, 1]°, y can be decomposed
(Sobol[1993]) as :

f(x,....x) =fo + Z A+ D (%) + otk p(xa, . Xp)
1<i<j<p

with the classical property of orthogonality.

® Consider that the input parameters are independent random variables, the joint pdf of the
input factors is P(X;, Xz, ..., Xp) = [17_; p(X)).

P P
E[f(Xq, 4--7Xp)]:/ (o + D6+ D HXX)+ .o+ fo (X1, X, s X)) T R(X) 0X;
[0,1P i=1 1<i<j<p i1
2 a 2
V(Y) = V(f(Xy, ..., X)) = _/[0 - (Xys ey Xk) HP(X/')O'X/' —fo

® First order Sobol index (S;) gives the influence of each parameter taken alone.
Second order Sobol index (Sj) a sensitivity measure due to the uncertainties
in the set of input parameters{/, j}.
Higher orders give mixed influence of parameters
_ V(E(YIX)) _ V(ELY/X;, X)) — V(E[Y/Xi]) — V(E[Y/X]])
Si= —— 2, § = . Sjkr -
v(Y) v(Y)
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Introduction to Chaos Polynomial
Wiener-Askey Polynomial Chaos

The chaos expansion expresses the random process through a complete and orthogonal basis in
terms of random variables. Polynomial Chaos {PC} is restricted to second-order stochastic
processes, i.e. processes with finite second-order moments (Cameron, Martin[1947]).

@® A second-order random process (£2) can be represented as :

Ow) = D Ok Vk(E(w)), &) ={&(w)}Sy  Wiener[1938]

- 0Ok deterministic ex?)?a%sion coefficients,

- Wi (&(w)) random trial basis,

- W} s orthogonal polynomials from the Askey-scheme,
- {&i(w)}2, independent random variables.

® Generalized {PC} forms a complete orthonormal basis of the Hilbert space with the inner
product and the orthogonality relation.

® |n pratical computations, the stochastic space must be truncated.
The total number of expansion terms P + 1 is determined by N (¢(w) = {ﬁ,'(w)};\/:1) and p,
which is the highest degree of the orthogonal polynomials :

(N + p)!

P
O(w) = ;)ekwk (¢(w)) P+1= Nip!

® The combination of random vector and polynomials is carefully selected from the
distribution of the random input.
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Introduction to Chaos Polynomial
Sobol Indices Calculations

It is possible to approximately represent the random response of a system as a {PC} expansion.
Due to the orthogonality of the basis we can obtain the mean and the variance of the response

oo 2 o0
E[f(X)] = E[Y_ f Wi(X)] = fo, VIF(X)] = [(Z fie Wi(X) — fo> } = > RE[WRX)]
k=0 k=0 k=1

® Expansion coefficients {fk} calculatlons
< X)W (X) >=< Z fi Wi(X) Wi(X) >= Z fi < W(X)Wk(X) >=fi < V2(X) >
1=0 1=0

< HX)WR(X) >
< vE(X) >

® \Variance calculation
Varlf(X, s Xi)l = E [(Sier, , WVk(X)?] = Tyer,

® Sobol Indices Calculations : from the {PC} chaos representation we can reach the full list of
Sobol indices (Sudret[2006])

. & EIVE(X)]

------

i

N >0y = (69)
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Quasi-Monte Carlo

Quasi-Monte Carlo Application

Halton Sequence

Congruential Generator

Curse of dimensionality

Suite de Halton multidimensionnée

02 3 04 06

Rate of convergence

Partial Variances and Variance Values
L G

10° sy
(14 Mel - Polynomial Order P=4)
g
3
L I I
g "3

Random Sampling Number

Covariance matrices comparison
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Outline

Least-Square vs Bayesian inference
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Least-Square vs Bayesian inference

Least Square

® The most probable probabilty density function is the Gaussian multivariate distribution

_ 1 ! Tyt
fX(X)—W X| (—E(K_ﬁ) VX (X—ﬁ)>

® V/y :in arigourous way, we introduce the parameters correlations

* Vy obtained with a minimum chi-square estimation

EXP calc

=N Z( exp

2.

® V : experimental covariances matrice

P no covariance estimation.

*
(generalized X2 ) with experimental covariances :

« introduce x?

((of*" — oDV TP afa“)))

* Levenberg-Marquardt Minimization Algorithm = (P. Dossantos-Uzarralde[2007])
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Least-Square vs Bayesian inference

Bayes inference

Principe
\ P

Calibration par méthode Bayésienne

suivant a priof,

Barres d’erreur- Dispersion

SCAT Vodel

des points exp.

* fug i)

@® Onthe right, Bayesian Simulations.

Green : standard error obtained by least square optimisations - Brown : Bayesian optimisations - random parameter interval

+ 1%, in yellow: random parameter interval 4+ 0.5%.)
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Covariance matrices comparison

31/51



Outline

Data learning application
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Data learning application

Support Vector Machine

w = (w1, -- ,wg) € R? un vecteur de paramétres du modgle fmode/
wp le paramétre d’ordonnée a l'origine.

Probléme de régression

On cherche une application linéaire fmode!(gpred) — t,Epred ) telle que pour tout point

d'apprentissage de Ay, o7 soit le plus proche possible de fm%!(E>P).

EP* (EP* € R) : vecteur caractérisant les valeurs des énergies. On pose cependant £7° € RY
uniguement pour des besoins mathématiques.

< .,.> est le produit scalaire dans R?.
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Support Vector Machine

Fonction de perte

Ve € Ry, [(oP, (MOdl(EOP))  _ | o _ model porpy
) 0 & |o_iexp _ fmodel ( EI?XPH <e
= |U;exp __ gmodel ( Eié’XP)| — € sinon

Cette fonction de perte est une norme Ly epsilon insensible, c’est-a-dire qu’elle ne pénalise pas
les mauvaises prédictions a epsilon pres. Toutes les valeurs présentes dans le tube d’epsilon
sont alors déterminantes pour la régression, les autres valeurs sont pénalisées. En ulilisant cette
fonction de perte, on obtient le risque réel empirique suivant :

m

m
ﬁ/Reel(medely .Af) — % Z /(U;sxp’ fl_model) — 15 Z |0'pr _ fmode/(Epred”E. (4)
i=1 i=1
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Support Vector Machine

Mn total cross section

4-

Experimental data

3.8-

3.6r

3.4r

3.2r

Cross section (mb)
w
T

2.8f
2.6F
241
2.2f
2 Il Il J
0 5 10 15
Energy (eV,
gy (eV) x 10°
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Support Vector Machine

Mn total cross section

4

Experimental data
3.8+ SVM regression
3.6F
3.4F

3.2r

Cross section (mb)
w
T

2.8f
2.6F
241
2.2f
2 Il Il J
0 5 10 15
Energy (eV,
gy (eV) x 10°
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Support Vector Machine

Mn total cross section
4 o

O  Generated measureg
3.8k ©  Experimental data
SVM regression

3.4r

3.2r

Cross section (mb)
w
T

2.8f
2.6F
241
8
o
22 ° o
2 Il Il J
0 5 10 15
Energy (eV,
gy (eV) x 10°
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Support Vector Machine

Matrice de covariance "expérimentale" X ¢
(400, 400)

150 200 250 300 350 x310'3
&
A
7 2
o
£
4
150
200f \ % | 0
250 3
; -1
i soeae @ - - B PRI
¢ N » x
£ % -2
350
-3
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Scoring Method

n initial evaluations

Adequation to experimental data

’ S(feL R, L s(fe, P ‘ n score evaluations

Sort of the evaluations

according to the score values

ny evaluations

Empirical estimators

P. Dossantos-Uzarralde Covariance matrices comparison

. 2 __
(n) n sorted evaluations X =

En
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9;

2
E) - f“%E;))
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Score functions used

N 2
cvalfex () — 17 ()
2 S(f fo) Z (expl

j=1 l

9

N 1 X| 2 N i 2
eval  fex fieva E;) — 7P (E P E; — P E;
BY S(f, ) =3 (W) 4 E l(’%’”)

HRBC S(ff*, f*) =
N I[IEXP(E _Uexp fe"l’(E)Jraexp](f al(E/)) 1 fieval(Ej) _ fexp(Ej) 2
> exp |- ( FHUELSHED

exp
— exp \/7

9;

-

with Ia(x) =1ifxcA
1a(x) =0ifx¢A
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Data learning application

Example : Covariance Matrice Estimator

P. Dossantos-Uzarralde

Covariance matrices comparison
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Outline

@ Metric on matrix space

P. Dossantos-Uzarralde Covariance matrices comparison 39/51



Distance between matrices

Classical distance:
Frobenius norm

Quality of an estimation £ of ¥

B 0r(E,5) = |IE - Tl|r = /trace((E - £)1.(E - %))

Quality of the inverse £~ for the estimation of ¥~
m (T I =T - e
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Distance between matrices

Entropy and Kullback-Leibler

Quality of an estimation £ of ¥
m Entropy: de(%, %) = u(Z.X 1) — log(det(Z.x 1)) = N

Quality of the inverse £~ for the estimation of ¥~
m Kullback-Leibler: dy(Z, %) = tr(=~'.X) — log(det(z~1.5)) - N

James and Stein 1961, Estimation with quadratic loss, Proceedings of the Fourth Berkeley Symposium on Mathematical

Statistics and Probability.

Levina & al. 2008, Sparse estimation of large covariance matrices via a nested lasso penalty, The Annals of Applied Statistics.

Tumminello & al. 2007, Kullback-Leibler distance as a measure of the information filtered from multivariate data, Phys. Review E.
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Outline

Bootstrap utility
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________________________Bootstapuiiity |
Bootstrap definition

What is Bootstrap

In statistics, bootstrapping can refer to any test or metric that relies on random sampling with
replacement. Bootstrapping allows assigning measures of accuracy (defined in terms of bias,
variance, confidence intervals, prediction error or some other such measure) to sample esti-

. TR TR TR
f' S21o2 0]
T
@

H—@

@\\é%?é??é%
Q 'S S T
o Setaetoeh
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Bootstrap: general principle

X~F what we want
T = T(F) unknown
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Bootstrap: general principle

X~F what we want Example:
s = T(F) unknown
(Xi,.s Xn) ~ FE" F =~ F | whatwe have (X1, Xn) = (1,2,3,4,5)
observed (or(Xy,...,Xn) = nevaluations)
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observed (or(Xy,...,Xn) = nevaluations)

plug-in: & = T(F)

/

* Y F®n (X, ..., X751 =(1,8,4,8,5)
(X o Xo)s N F what we do 1
F'~F resampling

fﬂ _ (ﬁﬂ)
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Bootstrap: general principle

what we want

s = T(F) unknown

what we have

(X, Xo) ~ FE" F o F
observed

plug-in: & = T(F)

(X1*7"'7XI’7*)1 ~ ﬁ®n [
F'~F
2*1 _ (ﬁﬂ)

what we do
resampling

B resamplings allow statistics on the distribution of T

E(%), Var(%), Bias(%),...

P. Dossantos-Uzarralde

Covariance matrices comparison

Example:
Xis .-, X2) = (1,2,83,4,5)
(or(Xy,...,Xn) = nevaluations)
(X7, X1 =(1,3,4,3,5)
X7 X )2 = (4,1,2,3,4)
X, X)g = (5,1,3,4,2)
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Bootstrap: general principle

what we want

s = T(F) unknown

(X, Xo) ~ FE" F o F
plug-in: & = T(F)

what we have
observed

(X5, X )~ F®7 e
F'~ F
2*1 _ T(ﬁﬂ)

o what we do
resampling

B resamplings allow statistics on the distribution of T

B
de(E,5) ~ de(%, %) = &
b=1

P. Dossantos-Uzarralde

Covariance matrices comparison

ST de(£*0,5) and  dk(E, %) ~ dk (%) =

Example:

,Xn) =(1,2,3,4,5)
, Xn) = nevaluations)

(X{, .. X1 = (1,8,4,3,5)

(XFy o X )2 = (4,1,2,3,4)

Xt ..., X)g = (5,1,3,4,2)
B ~

, B dk(E, %)
b=1
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Bootstrap: general principle

X~F what we want Example:
T = T(F) unknown
(Xi,.s Xn) ~ FE" F =~ F | whatwe have (X1, Xn) = (1,2,3,4,5)
plug-in: i _ T( ,:—) observed (or(Xy,...,Xn) = nevaluations)
* i VPR =L * *\ o ., F®n (X, X1 = (1,8,4,8,5)
(% B Xo)s . F (X7, " Xa )BA F what we do (X}‘, o ,X,,*); — (4,1,2,3,4)
Fi~F FExF resampling

fﬂ _ (ﬁﬂ) Z*B _ T(ﬁ*B)

X, X:)g = (5,1,3,4,2)

B resamplings allow statistics on the distribution of T

B B
de(E, %) ~ de (%, %) = %ZdE(f*b7 T) and dk(E, %)~ dk(T,X) = | Z dk (20, %)
b=1 b=1

cT(f, Y) and dAK(f, Y) are independant of the method used for,the generation of f]
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Bootstrap utility

Bootstrap: theoretical justification
Bickel and Freedman 1981
L

it vA(T(F) — T(F)) - Pthen n(T(F*) — T(F)) 55 P

Bickel and Freedman, Some asymptotic theory for the bootstrap, the Annals of Statistics, 1981.

Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1981.
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it vA(T(F) — T(F)) - Pthen n(T(F*) — T(F)) 55 P

X~F what we want
. T = T(F) unknown
Va(E-%) 5P
T (Xt s Xn) ~ FON F F what we have
s T(f-‘) observed

Bickel and Freedman, Some asymptotic theory for the bootstrap, the Annals of Statistics, 1981.
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Bootstrap utility

Bootstrap: theoretical justification
Bickel and Freedman 1981

it vA(T(F) — T(F)) - Pthen n(T(F*) — T(F)) 55 P

X~F what we want
. T = T(F) unknown
Va(E-%) 5P
(X .oy Xn) ~ FON F s F what we have
s T(f-‘) observed
VnET %) 5P
X X ~ F®n ) XX ~ F&n
( 10 A: n)1A ( 19 ,\7 n)BA what we do
F1xF FBx F resampling
T = T(F*1) $+B = T(F*B)

Bickel and Freedman, Some asymptotic theory for the bootstrap, the Annals of Statistics, 1981.

Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1981.
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Bootstrap utility

Bootstrap: theoretical justification
Beran and Strivastava 1985
with £ the empirical CDF, v/n(E — ) -5+ A/(0,Q) and A(S* — 5) -5 N(0,Q) J

Beran and Srivastavia, Bootstrap tests and confidence region for functions of covariance matrix, The Annals of Statistics, 1985.
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X~F what we want
. s = T(F) unknown
VN(E — ) -5 N(0,9)
Xy, Xn) ~ FON F s F what we have
s _ T(,A:) observed
VR(ET - %) £ N(0,Q)
XF, o X2)g ~ F®N (XL X ) g ~ FON
( 1 A» n)1A ( 19 Ay n)BA what we do
F1x~F FBxF resampling
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Bootstrap: theoretical justification
Beran and Strivastava 1985
with F the empirical CDF, v/A(E — ) -5 A(0,Q) and v/A(E* — £) -5 A(0, Q) J

X~F what we want
s = T(F) unknown
Xy, Xn) ~ FON F s F what we have
= ~ . observed
de(%,X) T =T(F)
Xr, o, X)) ~ FON e (XL X )g ~ FON
( 1 ; n)1A ( 1 ; n)BA what we do
F1x~F FBxF resampling
de(£", %) £ = T(F*T) $+B — T(F*B)

Beran and Srivastavia, Bootstrap tests and confidence region for functions of covariance matrix, The Annals of Statistics, 1985.
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Bootstrap implementation

With scoring
n initial evaluations
ment
b=B Bb
ootstra|
’ ﬂeval*7 e f;c]val* e ’ ffval»«7 e fre'val* Samplesp
Sort of the evaluation
ac¢ording to the score values
| |
feval* ‘ feval* feval* ‘ feval*
RN ) (ORI )
[—— [ ——
ny evaluations ny evaluations
1 $«B B bootstrap
2 2 matrices
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Bootstrap implementation

With scoring
n initial evaluations
ment
b=B
ﬂeval*7 o f;c]val* . f1eval>ﬁ<7 e fre)val* Bsbaon?:)slgsap
Sort of the evaluation
ac¢ording to the score values
| |
feval* : feval* feval* : feval*
(1) oy (n) 1) o i(n)
(— R p—

ny evaluations

|

i

P. Dossantos-Uzarralde

ny evaluations

l

Sx B bootstra
pajad A

matrices

Covariance matrices comparison

With Brute Monte Carlo

evalx | eval evalx | eval*
f1 7\~~-7fn f1 7%~~7fn
f—— ——
n mn
evaluations evaluations
Sl $*B
pass pa
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Bootstrap utility

Entropy and Kullback-Leibler versus n;

Bootstrap estimation of dg(i,Z) for Rb85 (n,2n) with B = 250

—B

—— HRBC
—— Chi2
—— Brute MC

de

100 200 300 400 500 600 700 800 900
m

Bootstrap estimation of dk (i, 2) for Rb85 (n,2n) with B = 250

—
—— HRBC
° —— chi2
= Brute MC
‘
o~ o
a <
K o
:
)
- - —

N

Covariance matrices comparison
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Entropy ratio and Kullback-Leibler ratio versus B

n =625 Local scoring
l/'/— ——BY
—— HRBC
m““ —— Chi2
—~ o ——MC
de(%, %) 3,
-
for Rb85 (n,2n) ossi”
Vo =
—— HRBC
== Chi2
_ost o
dk(Z, %) 3.
for Rb85 (n,2n) o5
o
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Bootstrap utility

En. ratio and K-L ratio versus param. variation
B =500,

ny — 625 Local scoring Global scoring ((n,2n),(n,),(n,a))
1 1
095
——BY
[
—— Chi2
Q08 9
de(%,%)s S
= _. Yo ¥
de(Z, D)me 2 o, 2
w aw
& 065] & 06|
for Rb85 06 06
(n 2n) 055 055
053 4 6 8 10 12 14 16 18 20 0% 4 6 8 10 12 14 16 18 20
Parameters variation (%) Parameters variation (%)
1 1
095
03]
© 085 v
(%, %)s = ™ <
T~ —— gms\ &ors
dk(Z, D)me 2 o, 2 o
w W
¥ 085 ¥ 03]
for Rb85 06 06
(n 2n) 055 055
e A N 1= T M Iy
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