
Réseaux Datacenters/HPC
TP - Simulation de topologie et analyse des performances

CEA/ENSIIE – 2017-2018

11 avril 2018

Résumé

Le premier objectif de ce TP est de prendre en main les outils capables de simuler des
réseaux de type datacenters/HPC. Le second objectif est d’être capable d’interpréter les métriques
extraites des différents outils dans le but d’analyser les performances en fonction des topologies
ainsi que d’étudier les mécanismes de routage mises en place.

Table des matières
1 Notation et rendu 2

1.1 Le rendu . 2
1.2 Barème des questions . 2

2 Apprentissage 3
2.1 Connexion à la machine virtuelle . 3
2.2 Génération de la topologie . 3
2.3 Création des groupes . 6
2.4 Chargement de la topologie . 6
2.5 Dump des informations . 7

3 Génération de topologies 9

4 Changement de routage et de topologie 9
4.1 Génération d’un XGFT . 9
4.2 Sur une plus grande topologie . 10

5 Étude d’une topologie réelle 10

6 Analyses des performances 11

1 Notation et rendu
Comme indiqué en cours, ce module sera noté en grande partie sur le rendu du TP mais aussi

sur votre participation. Les éléments de notation qui seront particulièrement observés :

1. La qualité rédactionnelle : la forme et le fond
2. La qualité des schémas
3. La pertinence des réponses
4. Tous les éléments de réflexion personnelle démontrant l’acquisition des connaissances

Les rapports peuvent être faits à maximum 2. Tout nom manquant sur le rendu aura automati-
quement 0. Si vous le faites à 2, il n’y a qu’un seul rendu attendu.

1.1 Le rendu

Le rendu final sera une archive (zip) contenant les éléments suivants :

1. Le rapport
2. Les scripts écrits
3. Les graphiques (on limitera à maximum 2MB par graphique, si vous en avez des plus lourds,

ne les mettez pas dans l’archive)

La transmission du rendu, vous devez envoyer par mail l’archive au format NOM1_NOM2.zip à
l’adresse damien.gros@cea.fr.

Vous avez jusqu’au lundi 14 Mai 19h00 pour envoyer vos rendus.

Tout retard dans le rendu entrainera la note de 0 aux personnes du groupe. En cas de problème,
n’attendez pas la dernière minute pour nous en faire part.

1.2 Barème des questions

Le barème est indicatif et pourra être modifié. Les réponses attendues doivent être concises et
précises.

— Une ligne de commande : 1 point
— Un schéma fait : 1.5 points
— Les analyses, les réflexions : entre 2 points et 4.

2

2 Apprentissage
Rappels des différents outils utilisés :
— CreateIBNet.py [Hoefler, 2013]
— res.py
— ibsim
— openSM
— un ensemble de scripts :

— ibnetdiscover
— dump_lfts
— nodeset [CEA, 2017]

— utilParser.py
Les outils ibsim, openSM, ibnetdiscover et dump_lfts sont fournis par Open Fabrics [Open Fabrics, 2017].
Dans cette première partie, nous allons nous intéresser au fonctionnement des outils. L’objectif

est donc d’apprendre à les utiliser pour pourvoir, par la suite, analyser l’impact sur les performances
des différences topologies ainsi que des algorithmes de routage.

Pour ce faire, nous allons partir sur un exemple simple : un Fat Tree, de niveau 3 avec 8 nœuds
composé de 4 ilots de 2 nœuds chacun.

Ex. 1 — Prise en main des outils
1. Qu’est-ce qu’une topologie de type Fat Tree ? Quels sont ces principales caractéristiques ?
2. Combien faut-il de switchs pour interconnecter tous les nœuds de calcul ?
3. Sur un schéma, représenter le résultat attendu

2.1 Connexion à la machine virtuelle

Pour réaliser la partie pratique, nous allons utiliser une machine virtuelle préparée spécifiquement
pour ce TP. Elle est déjà en place sur le cluster.

La machine virtuelle que l’on va utiliser est dans le dossier : TP1_M1.
Le contenu du fichier .pcocc/templates.yaml.

1 e n s i i e :
r e s o u r c e −s e t : ens−c l u s t e r

3 image : /home/ grosd /VM/M1_TP1

Pour vous connecter, soit vous définissez un utilisateur grâce à l’instruction user-data en
générant une bi-clé pour SSH, soit vous vous connectez en root avec le mot de passe : root.

Pour lancer la machine, utilisez la commande suivante :
1 pcocc a l l o c −c 1 e n s i i e : 1

2.2 Génération de la topologie

Une fois cette première étape réalisée, nous allons générer la topologie grâce à l’outil createIB-
Net.py.

Pour ce faire, déplacez-vous dans le dossier nommé ENSIIE (transmis par l’intervenant). Ce
dossier doit contenir les éléments suivants ;

— createIBNet.py

3

— res.py
— utilParser.py
Lancer le script python de la manière suivante :

1 r oo t@hos t :# python c r ea t e IBNe t . py −−h e l p

Listing 1 – Affichage de l’aide de l’outil createIBNet.py

Vous devriez obtenir la sortie suivante :
1 Program to c r e a t e an i n p u t f i l e f o r the I n f i n i B a n d Network S i m u l a t o r (i b s i m)

Usage :
3 c r e a t e IBNe t [−o <o u t p u t f i l e >] [− t <topo logy >]

[−n <#endpo in t s >] [−np <#por t s_per_endpo in t >]
5 [− s <#sw i t che s >] [− sp <#por t s_pe r_sw i t s ch >]

[−d [1 | 2 | 3] <s i z e i n i . d imens ion >]
7 [− t [k | n] <k , n f o r k−ary−n−Tree>]

[−k [b | n] <b , n f o r Kautz graph K(b , n)>]
9 [−x [h |m|w] <h ,m,w f o r XGFT>]

[− f [a | p | h] <a , p , h f o r Dragonf l y >]
11

−o name o f the output f i l e
13 − i name o f e x i s t i n g t opo l ogy f i l e to l oad and modi fy

− r i d name o f e x i s t i n g r o o t g u i d f i l e f o r e x i s t i n g topo l ogy
15 −t the t opo l ogy (d e f a u l t = 2D−Mesh) o f the I n f i n i B a n d Network

[FatTree | k−ary−n−Tree | 2D−Mesh | 3D−Mesh |
17 2D−Torus | 3D−Torus | Kautz | XGFT | Random |

Dragon f l y | Cascade | Tofu | Taurus | MMS | l oad]
19 −n number o f e n d p o i n t s (Hca) i n the network (d e f a u l t = 8)

−np number o f p o r t s f o r each endpo in t (d e f a u l t = 1) [1 | 2]
21 −s number o f s w i t c h e s (d e f a u l t = 4)

−sp number o f p o r t s f o r each s w i t c h (d e f a u l t = 4)
23 −d1 s i z e o f the 1 . d imens ion f o r Mesh / Torus / Tofu

−d2 s i z e o f the 2 . d imens ion f o r Mesh / Torus / Tofu
25 −d3 s i z e o f the 3 . d imens ion f o r Mesh/ Torus (o n l y when 3D) and Tofu

−ml e n a b l e mu l t i − l i n k c o n f i g u r a t i o n between s w i t c h e s f o r Mesh/ Torus /Kautz/
MMS

27 −tk k (k−ary−n−Tree) i s h a l f the number o f p o r t s f o r each s w i t c h
−tn n (k−ary−n−Tree) i s the number o f l e v e l s i n the t r e e

29 −kb b f o r Kautz K(b , n) i s the base o f the Kautz s t r i n g
−kn n f o r Kautz K(b , n) i s the l e n g t h o f the Kautz s t r i n g

31 −xh h f o r XGFT(h ,m,w) i s the h e i g h t o f the t r e e
−xm m f o r XGFT(h ,m,w) : a comma s e p a r a t e d l i s t w i thou t w h i t e s p a c e s

33 −xw w f o r XGFT(h ,m,w) : a comma s e p a r a t e d l i s t l i k e −xm (e . g . 2 , 3 , 2)
−c l c o n n e c t i o n l i n k s f o r Random : number o f l i n k s between s w i t c h e s

35 −r s seed f o r Random
−f a a f o r Dragon f l y (a , p , h) i s the number o f r o u t e r s i n each group

37 −f p p f o r Dragon f l y (a , p , h) i s the number o f HCA connected to each r o u t e r
−f h h f o r Dragon f l y (a , p , h) i s the number o f l i n k s w i t h i n each r o u t e r to

connect to o t h e r g roups
39 −f g g f o r Dragon f l y (a , p , h) i s a o p t i o n a l number o f g roups ; w/o we use a∗h

+1 groups
−cg g f o r Cascade (96 ,8 , 10) i s a number o f g roups

41 −cb g l o b a l l i n k s between 2 groups f o r Cascade (96 ,8 , 10) ; min : 4 , max : a∗h /
(g−1)

Listing 2 – Paramètres de l’outil createIBNet.py

On peut noter que ce script est capable de générer un nombre important de topologies réseaux
et qu’il possède un certain nombre de valeurs par défaut, qu’il faudra faire attention à bien modifier
pour obtenir les résultats voulus par la suite.

4

Comme dit précédemment, nous allons générer un Fat Tree avec 8 nœuds.
1 r oo t@hos t :# python c r ea t e IBNe t . py −t FatTree −n 8 −xh 3 −xm 2 ,2 ,2 −s 7 −sp 3

Listing 3 – Génération d’un FatTree

Explication des commandes utilisées :
1 −t FatTree −n 8 −xh 3 −xm 2 ,2 ,2 −s 7 −sp 3

Listing 4 – Explication des paramètres

— le paramètre "-t" permet de spécifier la topologie que l’on veut générer : ftree
— le paramètre "-n" permet de spécifier le nombre de nœuds finaux : 8
— le paramètre "-xh" permet de spécifier la hauteur de notre arbre : 3
— le paramètre "-xm" permet de définir le nombre de fils que doit avoir (au maximum) chaque

switch de notre topologie : 2 pour chacun des swtichs. Comme notre arbre a une hauteur de
3, il est nécessaire de spécifier 3 valeurs même si elles sont identiques.

— le paramètre "-s" permet de spécifier le nombre de switchs de notre topologie : 7
— le paramètre "-sp" permet de spécifier le nombre de ports par switchs : 3
Nota Bene : il est parfois nécessaire de spécifier un nombre de ports petits sur les switchs pour

obtenir la topologie voulue.

Une fois le script exécuté, on peut vérifier que les paramètres donnés ont bien été pris en compte
en analysant la sortie de l’outil (et qu’ils correspondent bien à ce que l’on voulait obtenir)

1 python c r ea t e IBNe t . py −t FatTree −n 8 −xh 3 −xm 2 ,2 ,2 −s 7 −sp 3
S e l e c t e d c o n f i g u r a t i o n :

3 Output : /home/Damien/ net . t x t
Topology : FatTree

5 Number o f e n d p o i n t s : 8
Number o f p o r t s pe r e n d p o i n t s : 1

7 Number o f s w i t c h e s : 7
Number o f p o r t s pe r s w i t c h : 3

9 Dimens ions f o r Mesh/ Torus : −1, −1, −1
k−ary−n Tree : −1 −ary− −1

11 Kautz K(b , n) : K(−1; −1)
XGFT(h ,m,w) : XGFT(3 ; 2 , 2 , 2 ; −1)

13 Dragon f l y (a , p , h) : D ragon f l y (−1 , −1, −1) wi th −1 groups
Cascade (a , p , h , g) : Cascade (96 , 8 , 10) w i th −1 groups

15 Tofu (d1 , d2 , d3) : Tofu (−1 , −1, −1) wi th −1 groups

17 This program a l s o w r i t e s an dot− f i l e to p l o t the graph wi th Graphv i z .
Try :

19 dot / neato net . dot −Tpng −o graph . png && e v i n c e graph . png

21 F i n i s h !

Listing 5 – Exemple de sortie de l’outil createIBNet.py

2 fichiers ont été générés (avec les noms par défaut si vous n’avez pas modifié cette option) :

1. net.txt
2. net.dot

On notera que le script génère un fichier au format .dot, interprétable par graphviz, permettant
de générer de manière graphique le résultat. Faites-le et vérifier que le résultat obtenu correspond
bien au schéma que vous aviez réalisé à la question 2.

5

1 dot net . dot −Tpng −o graph . png && e v i n c e graph . png

Listing 6 – Génération du graph de la topologie

NB : si evince n’arrive pas à afficher le fichier généré, vous pouvez le faire grâce à la commande
eog.

2.3 Création des groupes

Comme nous construisons notre topologie dans un simulateur, nous allons aussi devoir créer les
ilots (de calcul, de stockage, de services, etc.).

Les informations des ilots sont renseignées dans le fichier nodes. Dans une première approche,
nous allons vouloir nous placer dans le cas le plus favorable. A partir de la topologie générée et du
graphique, renseignez le fichier nodes. Pour vous aider, vous pouvez trouver un exemple 7.

On définit :
— cas favorable : les groupes sont sur les mêmes leafs
— cas défavorable : les groupes sont répartis de manière aléatoire sur les leafs

ATTENTION : il sera peut-être nécessaire d’adapter à votre topologie.
1 @stockage Hca [0 , 1]

@ c a l c u l Hca [2 , 3]
3 @ s e r v i c e s Hca [4 , 5]

@aut r e s Hca [6 , 7]

Listing 7 – Exemple de groupe de noeuds

2.4 Chargement de la topologie

Nous allons maintenant charger la topologie générée dans le simulateur IB. Le fichier contenant
la topologie s’appelle net.txt.
i b s i m −s net . t x t

Listing 8 – Exemple d’utilisation d’ibsim

Le paramètre "-s" indique à ibsim qu’il doit activer la topologie.

Une fois la topologie chargée, nous allons pouvoir utiliser l’outil openSM (open Subnet Manager
pour les réseaux InfiniBand).

On peut laisser openSM détecter/choisir un routage, mais on peut aussi le lui imposer.
1 e x p o r t LD_PRELOAD=/u s r / l i b 6 4 /umad2sim/ l ibumad2s im . so

opensm −R f t r e e −f s t d o u t

Listing 9 – Exemple d’utilisation d’openSM

Dans ce cas, le paramètre "-R" permet d’imposer le routage.

Il faut noter que l’on peut donner à openSM un routage non adapté à la topologie, ou qu’il ne
connait pas, dans ces deux cas, il choisira par défaut un algorithme de routage pour la topologie
donnée.

6

net.txt

Vérifier, grâce aux informations fournies par openSM que le routage que vous avez choisi est
bien le ftree.

Une partie des informations est affichée sur le sortie standard, mais des informations peuvent
manquer. Pour avoir l’ensemble des informations, il faut se référer au fichier /var/log/opensm.log
(par défaut).

Ex. 2 — OpenSM
1. Quelles sont les informations fournies par l’outil openSM lors de son lancement sur la topo-

logie ?

2.5 Dump des informations

Maintenant, nous allons récupérer les informations sur la topologie que nous venons de créer. Le
but étant de pouvoir exploiter ces résultats par la suite.

Note importante : pour pouvoir utiliser correctement les outils de simulation et assurer l’interac-
tion entre eux, il est nécessaire d’exporter une libraire (en LD_PRELOAD) pour qu’elle soit chargée
par les outils. Pour cela, il suffit de taper la ligne suivante :

e x p o r t LD_PRELOAD=/u s r / l i b 6 4 /umad2sim/ l ibumad2s im . so

Listing 10 – Export LD_PRELOAD

Si des résultats de ibnetdiscover (en terme de nombres de switch/noeuds) ne sont pas conformes
à ce que vous avez chargé dans ibsim, il est fort probable que vous n’ayez pas tapé l’export avant
d’exécuter le programme (ou que vous avez changé de shell).

Le premier outil que l’on va utiliser est ibnetdiscover. Comme son nom l’indique, il permet
d’afficher des informations relatives au réseau IB sur lequel on se trouve.

Lancer simplement ibnetdiscover.

Ex. 3 — IBnetDiscover Part 1
1. Quelles sont les informations fournies par la commande ibnetdiscover ?

1 i b n e t d i s c o v e r > topo

Listing 11 – Extraction de la topologie avec ibnetdiscover

On va sauvegarder les informations dans un fichier nommé topo.

Ensuite, on va uniquement lister les nœuds connectés (on peut générer des topologies avec des
nœuds qui sont non-connectés)

1 i b n e t d i s c o v e r − l > h o s t s

Listing 12 – Génération des noeuds du réseau avec ibnetdiscover

On va sauvegarder les informations dans un fichier nommé hosts.

Ex. 4 — IBnetDiscover Part 2

7

/var/log/opensm.log
topo
hosts

1. Quelles sont les informations fournies par la commande ibnetdiscover -l ? Quelles sont les
différences avec la commande ibnetdiscover ?

La prochaine étape consiste à récupérer les tables de routage de chaque switch de notre réseau.
Pour cela, on va utiliser la commande dump_lfts.

1 dump_lf ts . sh > l t f s

Listing 13 – Récupération des tables de routages des switchs grâce à la commande dump_lfts
Ex. 5 — Table de routage

1. En vous aidant d’un exemple concret, décrivez la table de routge d’un switch.

A la fin de ces différentes manipulations, vous devriez avoir dans le dossier courant les éléments
suivants :

— topo
— hosts
— lfts
— nodes

Créer un dossier, nommé par exemple exo1 et déplacer ces 4 fichiers à l’intérieur.

Copiez aussi les fichiers utilParser.py et res.py dans ce même dossier.
Déplacez-vous dans le dossier exo1. Editez le fichier res.py. La variable DIR contient le dossier,

relatif au dossier de travail courant, qui va accueillir une partie des résultats que l’on va générer.

Exécuter simplement ce script python :
1 python r e s . py

Listing 14 – Génération des métriques

A l’intérieur du dossier exo1, un dossier nommé test a été créé et contient les résultats des
différentes analyses réalisées par le script.

Dans le but d’avoir une vision plus claire des résultats générés, rapatriez les 2 fichiers ayant pour
préfixe test_ sur votre station et ouvrez les avec un tableur (LibreOffice, OpenOffice, MsOffice).

NB : pour une lecture facilitée, lors de l’import du fichier, choisissez comme séparateur de colonne
"|".

Les commentaires des fichiers se feront par l’intervenant.

En modifiant le fichier nodes, comme décrit à la section 2.3, créer des groupes de nœuds non
efficients et relancer l’outil 14.

Ex. 6 — Premières modifications et interprétations
1. Comment établir un regroupement non efficient ?
2. Sur un schéma, montrez la répartition des ilots au sein de la fabrique.
3. Quelles sont les différences que vous pouvez observez au niveau des métriques ?
4. Comment expliquez-vous ces différences ?

8

topo
hosts
lfts
nodes
exo1
exo1
exo1
test
nodes

3 Génération de topologies
Comme on l’a vu dans le listing 2, l’outil createIBNet offre la possibilité de générer un certain

nombre de topologies, très différentes les unes des autres.
OpenSM est le gestionnaire de sous-réseau. Il est capable de déterminer, en découvrant la

topologie, quel algorithme de routage est le plus adapté.
A partir des exemples vu en cours, donnez les commandes pour générer les topologies suivantes :

Ex. 7 — Génération de topologies et visualisation
1. Tor 4-ary 1-cube : quel algorithme de routage est choisi par OpenSM (par défaut) ? Détaillez

la ligne qui vous a permis de générer cette topologie.
2. Tor 4-ary 2-cube : quel algorithme de routage est choisi par OpenSM (par défaut) ? Détaillez

la ligne qui vous a permis de générer cette topologie.
3. Un dragonfly quelconque : quel algorithme de routage est choisi par OpenSM (par défaut) ?

Détaillez la ligne qui vous a permis de générer cette topologie.
4. Pour chaque topologie générée, visualisez la avec l’outil graphviz et intégrez le résultat dans

le rapport final.

4 Changement de routage et de topologie
Dans le cours, nous avons vu un certain nombre de topologies différentes. Certaines sont très

théoriques, d’autres sont plus pratiques et se définissent comme des dérivations de modèles déjà
existants.

Dans cette partie, nous nous proposons d’étudier un dérivé du FatTree : le eXtended General
Fat Tree ou XGFT [Öhring et al., 1995].

L’un des principales problèmes générés par les Fat Tree est la mauvaise diversité des chemins.
Le second exemple présenté dans le cours est une première solution à ce problème mais il en existe
d’autre.

4.1 Génération d’un XGFT

Commencez par générer une topologie simple en vous aidant de l’aide de l’outil createIBNet
comme décrit au listing 2.
Ex. 8 — Topologie XGFT

1. Décrivez cette topologie.
2. Caractérisez cette nouvelle topologie (en terme de diversité des chemins, répartition de la

charge sur les liens, etc.)
Tout comme vous l’avez fait pour Fat Tree, chargez cette topologie dans le simulateur ibsim et

lancez openSM sans aucune option de routage.

Ex. 9 — Description de la topologie
1. Par défaut, quel est l’algorithme de routage choisi ?
2. Est-ce que les informations de topologie données par openSM sont correctes vis-à-vis de ce

que vous avez généré et que vous observez ? Recommencez en imposant le Fat Tree comme
algorithme de routage.

9

Nous allons étudier les conséquences de cette nouvelle topologie sur le routage et la congestion
de la fabric. Pour ce faire, nous allons reprendre la méthodologie de la première partie.

Générez les ilots les plus favorables (dans le fichier nodes). Refaites l’ensemble des opérations
vu dans la section II pour générer les métriques.

Ex. 10 — Comparaison dans une bonne répartition avec Fat Tree
1. En comparant avec le Fat Tree fait en exemple, pouvez-vous caractériser cette topologie au

travers de ce routage ?

Ex. 11 — Comparaison avec une répartition aléatoire avec Fat Tree
1. Faites la même chose en modifiant le fichier nodes dans le but de faire une répartition

aléatoire et reprenez la question ??.

4.2 Sur une plus grande topologie

Nous avons travailler sur une topologie avec uniquement 12 nœuds, qui ne reflète pas la réalité.
C’est pourquoi nous allons augmenter le nombre de switchs et de nœuds au sein de notre topologie
pour analyser les modifications de placement sur les performances globales.

Générez une topologie XGFT avec 128 nœuds, des switchs de 16 ports et de hauteur 3. XGFT(3 ;8,4 ;4,8)

Ex. 12 — XGFT avec 128 nœuds
1. Donnez votre ligne de commande.
2. Combien faut-il de switchs ?
Avec l’aide d’un script (shell ou python), renseignez le fichier nodes pour le cas le plus favorable.

Procédez à l’analyse du routage tel que vu dans le section II du TP.

Ex. 13 — Comparaison avec Fat Tree
1. En comparant avec le Fat Tree fait en exemple, pouvez-vous caractériser cette topologie au

travers de ce routage ?

Ex. 14 — Comparaison avec Fat Tree
1. Faites la même chose en modifiant le fichier nodes dans le but de faire une répartition

aléatoire. Et reprenez la question de l’exercice ??

5 Étude d’une topologie réelle
Nous venons de voir 2 topologies : le Fat Tree et le XGFT tel que définit dans la théorie. Ces 2

topologies sont difficilement applicables dans la pratique comme on l’a vu tout au long de ce TP.

Pour finir ce TP, nous allons voir une topologie un peu plus proche de la réalité. Elle reprend
l’ensemble des éléments que nous avons vu au cours de ce TP.

Dans le dossier transmis par l’intervenant, vous trouverez un fichier qui se nomme real.txt. Ce
fichier est une topologie qui a été générée à la main (c’est-à-dire sans utiliser l’outil createIBNet.py).

10

nodes
nodes
nodes
nodes
real.txt

Dans le but de pouvoir faire des comparaisons avec ce qui a été faits précédemment dans le TP,
nous avons volontairement réduit le nombre de nœuds à 128.

Ex. 15 — Etude de la topologie
1. Quelles sont les caractéristiques de cette nouvelle topologie ? Pour vous aidez, commencez

par donner le nombre de switchs en L1, L2, L3.
En reprenant les fichiers nodes que vous avez générés pour le XGFT, étudiez cette topologie

réelle.

Ex. 16 — Répartition aléatoire
1. Étudiez cette topologie avec une répartition aléatoire des groupes

Ex. 17 — Répartition optimale
1. Étudiez cette topologie avec une répartition optimale des groupes

6 Analyses des performances
Dans ce TP, nous avons étudier en détails 2 topologies assez proches : le Fat tree et le XGFT.

Nous avons aussi une topologie réelle, basée sur le XGFT. En modifiant les ilots (ou les groupes de
calcul), nous avons pu voir l’impact de ces placements au sein de la fabrique.

Maintenant, en vous basant sur ces deux études, répondez aux questions suivantes. Il est attendu
une réponse construite, avec des schémas au besoin. Les questions ne sont la que pour orienter votre
analyse.

Ex. 18 — Synthèse
1. Quelles sont les conséquences que l’on peut déduire de ces analyses.
2. Quels sont les enseignements possibles vis-à-vis du placement des jobs les uns par rapport

aux autres ? Et par rapport à un élément partagé ?
3. Peut-on trouver une solution efficace pour résoudre ce problème de partage de ressources

entre plusieurs jobs ?

Références
[CEA, 2017] CEA (2017). Python framework for efficient cluster administration. http://cea-hpc.

github.io/clustershell/. Accessed : 2017-12-20.
[Hoefler, 2013] Hoefler, T. (2013). createIBNet : script de génération de topologies. http://htor.

inf.ethz.ch. Accessed : 2017-12-20.
[Öhring et al., 1995] Öhring, S. R., Ibel, M., Das, S. K., and Kumar, M. J. (1995). On generalized

fat trees. In Proceedings of the 9th International Symposium on Parallel Processing, IPPS ’95,
pages 37–, Washington, DC, USA. IEEE Computer Society.

[Open Fabrics, 2017] Open Fabrics (2017). Ensemble d’outils pour gérer et administrer les réseaux
ib. https://www.openfabrics.org. Accessed : 2017-12-20.

11

nodes
http://cea-hpc.github.io/clustershell/
http://cea-hpc.github.io/clustershell/
http://htor.inf.ethz.ch
http://htor.inf.ethz.ch
https://www.openfabrics.org

	Notation et rendu
	Le rendu
	Barème des questions

	Apprentissage
	Connexion à la machine virtuelle
	Génération de la topologie
	Création des groupes
	Chargement de la topologie
	Dump des informations

	Génération de topologies
	Changement de routage et de topologie
	Génération d'un XGFT
	Sur une plus grande topologie

	Étude d'une topologie réelle
	Analyses des performances

