RESEAUX DATACENTERS/HPC
TP - Simulation de topologie et analyse des performances

CEA/ENSIIE - 2017-2018
11 avril 2018

Résumé

Le premier objectif de ce TP est de prendre en main les outils capables de simuler des
réseaux de type datacenters/HPC. Le second objectif est d'étre capable d'interpréter les métriques
extraites des différents outils dans le but d’analyser les performances en fonction des topologies
ainsi que d'étudier les mécanismes de routage mises en place.

Table des matiéres

1

Notation et rendu
1.1 Lerendu e
1.2 Bareme des questions

Apprentissage

2.1 Connexion a la machine virtuelle
2.2 Génération de la topologie
2.3 Création des groupes
2.4 Chargement de la topologie
2.5 Dump des informations

Génération de topologies

Changement de routage et de topologie
4.1 Générationd'un XGFT
4.2 Sur une plus grande topologie

Etude d’une topologie réelle

Analyses des performances

1 Notation et rendu

Comme indiqué en cours, ce module sera noté en grande partie sur le rendu du TP mais aussi
sur votre participation. Les éléments de notation qui seront particulierement observés :

1. La qualité rédactionnelle : la forme et le fond
2. La qualité des schémas
3. La pertinence des réponses

4. Tous les éléments de réflexion personnelle démontrant I'acquisition des connaissances

Les rapports peuvent étre faits a maximum 2. Tout nom manquant sur le rendu aura automati-
quement 0. Si vous le faites a 2, il n'y a qu'un seul rendu attendu.

1.1 Le rendu

Le rendu final sera une archive (zip) contenant les éléments suivants :
1. Le rapport
2. Les scripts écrits

3. Les graphiques (on limitera a maximum 2MB par graphique, si vous en avez des plus lourds,
ne les mettez pas dans I'archive)

La transmission du rendu, vous devez envoyer par mail I'archive au format NOM1_NOM2.zip a
I'adresse damien.gros@cea.fr.

Vous avez jusqu'au lundi 14 Mai 19h00 pour envoyer vos rendus.

Tout retard dans le rendu entrainera la note de 0 aux personnes du groupe. En cas de probléme,
n’attendez pas la derniére minute pour nous en faire part.

1.2 Bareme des questions

Le bareme est indicatif et pourra étre modifié. Les réponses attendues doivent étre concises et
précises.

— Une ligne de commande : 1 point

— Un schéma fait : 1.5 points

— Les analyses, les réflexions : entre 2 points et 4.

2 Apprentissage

Rappels des différents outils utilisés :
— CreatelBNet.py []
— res.py
— ibsim
— openSM
— un ensemble de scripts :
— ibnetdiscover
— dump_lfts
— nodeset [|
— utilParser.py
Les outils ibsim, openSM, ibnetdiscover et dump__|fts sont fournis par Open Fabrics |
Dans cette premiére partie, nous allons nous intéresser au fonctionnement des outils. L'objectif
est donc d'apprendre a les utiliser pour pourvoir, par la suite, analyser I'impact sur les performances
des différences topologies ainsi que des algorithmes de routage.
Pour ce faire, nous allons partir sur un exemple simple : un Fat Tree, de niveau 3 avec 8 nceuds
composé de 4 ilots de 2 nceuds chacun.

Ex. 1 — Prise en main des outils
1. Qu’est-ce qu’une topologie de type Fat Tree ? Quels sont ces principales caractéristiques ?
2. Combien faut-il de switchs pour interconnecter tous les nceuds de calcul ?

3. Sur un schéma, représenter le résultat attendu

2.1 Connexion a la machine virtuelle

Pour réaliser la partie pratique, nous allons utiliser une machine virtuelle préparée spécifiquement
pour ce TP. Elle est déja en place sur le cluster.

La machine virtuelle que I'on va utiliser est dans le dossier : TP1_M1.

Le contenu du fichier .pcocc/templates.yaml.

ensiie:
resource—set: ens—cluster
image : /home/grosd/VM/M1_TP1

Pour vous connecter, soit vous définissez un utilisateur grace a l'instruction user-data en
générant une bi-clé pour SSH, soit vous vous connectez en root avec le mot de passe : root.
Pour lancer la machine, utilisez la commande suivante :

pcocc alloc —c 1 ensiie:l

2.2 Génération de la topologie

Une fois cette premiére étape réalisée, nous allons générer la topologie grace a I'outil createlB-
Net.py.

Pour ce faire, déplacez-vous dans le dossier nommé ENSIIE (transmis par l'intervenant). Ce
dossier doit contenir les éléments suivants;

— createlBNet.py

-

w

o1

11

15

17

21

23

31

35

37

41

— res.py

— utilParser.py

Lancer le

script python de la maniere suivante :

root@host:# python createlBNet.py —help

Listing 1 — Affichage de I'aide de |'outil createlBNet.py

Vous devriez obtenir la sortie suivante :

Program to
Usage:

create an input file for the InfiniBand Network Simulator (ibsim)

createlBNet [—o <outputfile >] [—t <topology >]

[-n <#endpoints >] [—np <#ports_per_endpoint >]
[-s <#switches >] [—sp <#ports_per_switsch >]
[-d[1]2]3] <size in i. dimension >]

[-t[k|n] <k,n for k—ary—n—Tree>]
[-k[b|n] <b,n for Kautz graph K(b,n)>]
[-x[h|m]w] <h,m,w for XGFT>]
[-f[alp|h] <a,p.h for Dragonfly>]

—o name of the output file
—i name of existing topology file to load and modify
—rid name of existing rootguid file for existing topology
—t the topology (default = 2D-Mesh) of the InfiniBand Network

[FatTree | k—ary—n—Tree | 2D—Mesh | 3D—Mesh |

2D-Torus | 3D-Torus | Kautz | XGFT | Random |
Dragonfly | Cascade | Tofu | Taurus | MMS | load]

—n number of endpoints (Hca) in the network (default = 8)
—np number of ports for each endpoint (default =1) [1 | 2]
—s number of switches (default = 4)
—sp number of ports for each switch (default = 4)
—d1 size of the 1. dimension for Mesh / Torus / Tofu
—d2 size of the 2. dimension for Mesh / Torus / Tofu
—d3 size of the 3. dimension for Mesh/Torus (only when 3D) and Tofu
—ml enable multi—link configuration between switches for Mesh/Torus/Kautz/
MMS
—tk k (k—ary—n—Tree) is half the number of ports for each switch
—tn n (k—ary—n—Tree) is the number of levels in the tree
—kb b for Kautz K(b,n) is the base of the Kautz string
—kn n for Kautz K(b,n) is the length of the Kautz string
—xh h for XGFT(h,m,w) is the height of the tree
—xm m for XGFT(h,m,w): a comma separated list without whitespaces
—xw w for XGFT(h,m,w): a comma separated list like —xm (e.g. 2,3,2)
—cl connection links for Random: number of links between switches
—rs seed for Random
—fa a for Dragonfly(a,p,h) is the number of routers in each group
—fp p for Dragonfly(a,p,h) is the number of HCA connected to each router
—fh h for Dragonfly(a,p,h) is the number of links within each router to
connect to other groups
—fg g for Dragonfly(a,p,h) is a optional number of groups; w/o we use axh
+1 groups
—cg g for Cascade(96,8,10) is a number of groups
—cb global links between 2 groups for Cascade(96,8,10); min: 4, max: axh /
(g-1)

Listing 2 — Parametres de I'outil createlBNet.py

On peut noter que ce script est capable de générer un nombre important de topologies réseaux
et qu'il posséde un certain nombre de valeurs par défaut, qu'il faudra faire attention a bien modifier

pour obtenir

les résultats voulus par la suite.

-

11

15

Comme dit précédemment, nous allons générer un Fat Tree avec 8 nceuds.

ro

ot@host :# python createlBNet.py —t FatTree —n 8 —xh 3 —xm 2,2,2 —s 7 —sp 3

Listing 3 — Génération d'un FatTree

Explication des commandes utilisées :

FatTree —n 8 —xh 3 —xm 2,2,2 —s 7 —sp 3

Listing 4 — Explication des parameétres

— le paramétre "-t" permet de spécifier la topologie que I'on veut générer : ftree

— le paramétre "-n" permet de spécifier le nombre de nceuds finaux : 8

— le paramétre "-xh" permet de spécifier la hauteur de notre arbre : 3

— le paramétre "-xm" permet de définir le nombre de fils que doit avoir (au maximum) chaque
switch de notre topologie : 2 pour chacun des swtichs. Comme notre arbre a une hauteur de
3, il est nécessaire de spécifier 3 valeurs méme si elles sont identiques.

— le paramétre "-s" permet de spécifier le nombre de switchs de notre topologie : 7

— le paramétre "-sp" permet de spécifier le nombre de ports par switchs : 3

Nota Bene : il est parfois nécessaire de spécifier un nombre de ports petits sur les switchs pour

obtenir la topologie voulue.

en

Une fois le script exécuté, on peut vérifier que les paramétres donnés ont bien été pris en compte
analysant la sortie de I'outil (et qu'ils correspondent bien a ce que I'on voulait obtenir)

python createlBNet.py —t FatTree —n 8 —xh 3 —xm 2,2,2 —s 7 —sp 3
Selected configuration:

Output: /home/Damien/net. txt

Topology: FatTree

Number of endpoints: 8

Number of ports per endpoints: 1

Number of switches: 7

Number of ports per switch: 3

Dimensions for Mesh/Torus: -1, -1, -1

k—ary—n Tree: —1 —ary— —1

Kautz K(b,n): K(-1; —1)

XGFT(h,m,w): XGFT(3; 2,2,2; —1)

Dragonfly(a,p,h) : Dragonfly(—1, —1, —1) with —1 groups
Cascade(a,p,h,g) : Cascade(96, 8, 10) with —1 groups
Tofu(dl,d2,d3) : Tofu(-1, —1, —1) with —1 groups

This program also writes an dot—file to plot the graph with Graphviz.
Try:

Fi

dot / neato net.dot —Tpng —o graph.png && evince graph.png

nish!

de

Listing 5 — Exemple de sortie de I'outil createlBNet.py

2 fichiers ont été générés (avec les noms par défaut si vous n'avez pas modifié cette option) :
1. net.txt
2. net.dot

On notera que le script génére un fichier au format .dot, interprétable par graphviz, permettant
générer de maniere graphique le résultat. Faites-le et vérifier que le résultat obtenu correspond

bien au schéma que vous aviez réalisé a la question 2.

dot net.dot —Tpng —o graph.png && evince graph.png

Listing 6 — Génération du graph de la topologie
NB : si evince n'arrive pas a afficher le fichier généré, vous pouvez le faire grace a la commande
eog.
2.3 Création des groupes
Comme nous construisons notre topologie dans un simulateur, nous allons aussi devoir créer les

ilots (de calcul, de stockage, de services, etc.).

Les informations des ilots sont renseignées dans le fichier nodes. Dans une premiére approche,
nous allons vouloir nous placer dans le cas le plus favorable. A partir de la topologie générée et du
graphique, renseignez le fichier nodes. Pour vous aider, vous pouvez trouver un exemple 7.

On définit :
— cas favorable : les groupes sont sur les mémes leafs

— cas défavorable : les groupes sont répartis de maniére aléatoire sur les leafs

ATTENTION : il sera peut-étre nécessaire d'adapter a votre topologie.

@stockage Hca[0,1]
Q@calcul Hca[2,3]
@services Hca[4,5]
Qautres Hca[6,7]

Listing 7 — Exemple de groupe de noeuds

2.4 Chargement de la topologie

Nous allons maintenant charger la topologie générée dans le simulateur IB. Le fichier contenant
la topologie s'appelle net.txt.

ibsim —s net.txt

Listing 8 — Exemple d'utilisation d'ibsim

Le paramétre "-s" indique a ibsim qu'il doit activer la topologie.

Une fois la topologie chargée, nous allons pouvoir utiliser 'outil openSM (open Subnet Manager
pour les réseaux InfiniBand).

On peut laisser openSM détecter/choisir un routage, mais on peut aussi le lui imposer.

export LD_PRELOAD=/usr/lib64 /umad2sim/libumad2sim.so
opensm —R ftree —f stdout

Listing 9 — Exemple d'utilisation d'openSM
Dans ce cas, le paramétre "-R" permet d'imposer le routage.
Il faut noter que I'on peut donner a openSM un routage non adapté a la topologie, ou qu'il ne

connait pas, dans ces deux cas, il choisira par défaut un algorithme de routage pour la topologie
donnée.

net.txt

Vérifier, grace aux informations fournies par openSM que le routage que vous avez choisi est
bien le ftree.

Une partie des informations est affichée sur le sortie standard, mais des informations peuvent
manquer. Pour avoir I'ensemble des informations, il faut se référer au fichier /var/log/opensm.log
(par défaut).

Ex. 2 — OpenSM

1. Quelles sont les informations fournies par I'outil openSM lors de son lancement sur la topo-
logie 7

2.5 Dump des informations
Maintenant, nous allons récupérer les informations sur la topologie que nous venons de créer. Le

but étant de pouvoir exploiter ces résultats par la suite.

Note importante : pour pouvoir utiliser correctement les outils de simulation et assurer I'interac-
tion entre eux, il est nécessaire d'exporter une libraire (en LD_PRELOAD) pour qu'’elle soit chargée
par les outils. Pour cela, il suffit de taper la ligne suivante :

export LD_PRELOAD=/usr/lib64 /umad2sim/libumad2sim .so

Listing 10 — Export LD_PRELOAD

Si des résultats de ibnetdiscover (en terme de nombres de switch/noeuds) ne sont pas conformes
a ce que vous avez chargé dans ibsim, il est fort probable que vous n'ayez pas tapé I'export avant
d’exécuter le programme (ou que vous avez changé de shell).

Le premier outil que I'on va utiliser est ibnetdiscover. Comme son nom l'indique, il permet
d'afficher des informations relatives au réseau IB sur lequel on se trouve.
Lancer simplement ibnetdiscover.

Ex. 3 — IBnetDiscover Part 1

1. Quelles sont les informations fournies par la commande ibnetdiscover ?

ibnetdiscover > topo

Listing 11 — Extraction de la topologie avec ibnetdiscover

On va sauvegarder les informations dans un fichier nommé topo.

Ensuite, on va uniquement lister les nceuds connectés (on peut générer des topologies avec des
nceuds qui sont non-connectés)

ibnetdiscover —| > hosts

Listing 12 — Génération des noeuds du réseau avec ibnetdiscover

On va sauvegarder les informations dans un fichier nommé hosts.

Ex. 4 — |BnetDiscover Part 2

/var/log/opensm.log
topo
hosts

1. Quelles sont les informations fournies par la commande ibnetdiscover -17 Quelles sont les
différences avec la commande ibnetdiscover ?

La prochaine étape consiste a récupérer les tables de routage de chaque switch de notre réseau.
Pour cela, on va utiliser la commande dump_Ifts.

dump_Ifts.sh > Itfs

Listing 13 — Récupération des tables de routages des switchs grace a la commande dump_Ifts
Ex. 5 — Table de routage

1. En vous aidant d'un exemple concret, décrivez la table de routge d'un switch.

A la fin de ces différentes manipulations, vous devriez avoir dans le dossier courant les éléments
suivants :

— topo

— hosts

— 1fts

— nodes

Créer un dossier, nommé par exemple exol et déplacer ces 4 fichiers a I'intérieur.
Copiez aussi les fichiers utilParser.py et res.py dans ce méme dossier.
Déplacez-vous dans le dossier exo1. Editez le fichier res.py. La variable DI R contient le dossier,

relatif au dossier de travail courant, qui va accueillir une partie des résultats que I'on va générer.

Exécuter simplement ce script python :

python res.py

Listing 14 — Génération des métriques

A l'intérieur du dossier exol, un dossier nommé test a été créé et contient les résultats des
différentes analyses réalisées par le script.

Dans le but d’avoir une vision plus claire des résultats générés, rapatriez les 2 fichiers ayant pour
préfixe test__ sur votre station et ouvrez les avec un tableur (LibreOffice, OpenOffice, MsOffice).
NB : pour une lecture facilitée, lors de I'import du fichier, choisissez comme séparateur de colonne

|I||I
Les commentaires des fichiers se feront par I'intervenant.

En modifiant le fichier nodes, comme décrit a la section 2.3, créer des groupes de nceuds non
efficients et relancer |'outil 14.

Ex. 6 — Premiéres modifications et interprétations
1. Comment établir un regroupement non efficient ?
2. Sur un schéma, montrez la répartition des ilots au sein de la fabrique.
3. Quelles sont les différences que vous pouvez observez au niveau des métriques ?
4. Comment expliquez-vous ces différences ?

topo
hosts
lfts
nodes
exo1
exo1
exo1
test
nodes

3 Génération de topologies

Comme on I'a vu dans le listing 2, I'outil createlBNet offre la possibilité de générer un certain
nombre de topologies, trés différentes les unes des autres.

OpenSM est le gestionnaire de sous-réseau. Il est capable de déterminer, en découvrant la
topologie, quel algorithme de routage est le plus adapté.

A partir des exemples vu en cours, donnez les commandes pour générer les topologies suivantes :

Ex. 7 — Génération de topologies et visualisation

1. Tor 4-ary 1-cube : quel algorithme de routage est choisi par OpenSM (par défaut) ? Détaillez
la ligne qui vous a permis de générer cette topologie.

2. Tor 4-ary 2-cube : quel algorithme de routage est choisi par OpenSM (par défaut) ? Détaillez
la ligne qui vous a permis de générer cette topologie.

3. Un dragonfly quelconque : quel algorithme de routage est choisi par OpenSM (par défaut) ?
Détaillez la ligne qui vous a permis de générer cette topologie.

4. Pour chaque topologie générée, visualisez la avec I'outil graphviz et intégrez le résultat dans
le rapport final.

4 Changement de routage et de topologie

Dans le cours, nous avons vu un certain nombre de topologies différentes. Certaines sont trés
théoriques, d'autres sont plus pratiques et se définissent comme des dérivations de modeles déja
existants.

Dans cette partie, nous nous proposons d'étudier un dérivé du FatTree : le eXtended General
Fat Tree ou XGFT | |

L'un des principales probléemes générés par les Fat Tree est la mauvaise diversité des chemins.
Le second exemple présenté dans le cours est une premiére solution a ce probleme mais il en existe
d'autre.

4.1 Génération d’'un XGFT

Commencez par générer une topologie simple en vous aidant de I'aide de I'outil createlBNet

comme décrit au listing 2.
Ex. 8 — Topologie XGFT

1. Décrivez cette topologie.

2. Caractérisez cette nouvelle topologie (en terme de diversité des chemins, répartition de la
charge sur les liens, etc.)

Tout comme vous I'avez fait pour Fat Tree, chargez cette topologie dans le simulateur ibsim et
lancez openSM sans aucune option de routage.

Ex. 9 — Description de la topologie
Par défaut, quel est I'algorithme de routage choisi?

2. Est-ce que les informations de topologie données par openSM sont correctes vis-a-vis de ce
que vous avez généré et que vous observez ? Recommencez en imposant le Fat Tree comme
algorithme de routage.

Nous allons étudier les conséquences de cette nouvelle topologie sur le routage et la congestion
de la fabric. Pour ce faire, nous allons reprendre la méthodologie de la premiére partie.

Générez les ilots les plus favorables (dans le fichier nodes). Refaites I'ensemble des opérations
vu dans la section Il pour générer les métriques.

Ex. 10 — Comparaison dans une bonne répartition avec Fat Tree

1. En comparant avec le Fat Tree fait en exemple, pouvez-vous caractériser cette topologie au
travers de ce routage?

Ex. 11 — Comparaison avec une répartition aléatoire avec Fat Tree

1. Faites la méme chose en modifiant le fichier nodes dans le but de faire une répartition
aléatoire et reprenez la question 77.

4.2 Sur une plus grande topologie

Nous avons travailler sur une topologie avec uniquement 12 nceuds, qui ne refléte pas la réalité.
C'est pourquoi nous allons augmenter le nombre de switchs et de nceuds au sein de notre topologie
pour analyser les modifications de placement sur les performances globales.

Générez une topologie XGFT avec 128 nceuds, des switchs de 16 ports et de hauteur 3. XGFT(3;8,4 ;4,8)

Ex. 12 — XGFT avec 128 nceuds
1. Donnez votre ligne de commande.

2. Combien faut-il de switchs?
Avec I'aide d'un script (shell ou python), renseignez le fichier nodes pour le cas le plus favorable.

Procédez a I'analyse du routage tel que vu dans le section Il du TP.

Ex. 13 — Comparaison avec Fat Tree

1. En comparant avec le Fat Tree fait en exemple, pouvez-vous caractériser cette topologie au
travers de ce routage?

Ex. 14 — Comparaison avec Fat Tree

1. Faites la méme chose en modifiant le fichier nodes dans le but de faire une répartition
aléatoire. Et reprenez la question de |'exercice 77

5 Etude d’une topologie réelle

Nous venons de voir 2 topologies : le Fat Tree et le XGFT tel que définit dans la théorie. Ces 2
topologies sont difficilement applicables dans la pratique comme on I'a vu tout au long de ce TP.

Pour finir ce TP, nous allons voir une topologie un peu plus proche de la réalité. Elle reprend
I’ensemble des éléments que nous avons vu au cours de ce TP.

Dans le dossier transmis par I'intervenant, vous trouverez un fichier qui se nomme real.txt. Ce
fichier est une topologie qui a été générée a la main (c'est-a-dire sans utiliser I'outil createlBNet.py).

10

nodes
nodes
nodes
nodes
real.txt

Dans le but de pouvoir faire des comparaisons avec ce qui a été faits précédemment dans le TP,
nous avons volontairement réduit le nombre de nceuds a 128.

Ex. 15 — Etude de la topologie
1. Quelles sont les caractéristiques de cette nouvelle topologie ? Pour vous aidez, commencez
par donner le nombre de switchs en L1, L2, L3.

En reprenant les fichiers nodes que vous avez générés pour le XGFT, étudiez cette topologie
réelle.

Ex. 16 — Répartition aléatoire
1. Etudiez cette topologie avec une répartition aléatoire des groupes

Ex. 17 — Répartition optimale
1. Etudiez cette topologie avec une répartition optimale des groupes

6 Analyses des performances

Dans ce TP, nous avons étudier en détails 2 topologies assez proches : le Fat tree et le XGFT.
Nous avons aussi une topologie réelle, basée sur le XGFT. En modifiant les ilots (ou les groupes de
calcul), nous avons pu voir I'impact de ces placements au sein de la fabrique.

Maintenant, en vous basant sur ces deux études, répondez aux questions suivantes. |l est attendu
une réponse construite, avec des schémas au besoin. Les questions ne sont la que pour orienter votre
analyse.

Ex. 18 — Synthese
1. Quelles sont les conséquences que I'on peut déduire de ces analyses.

2. Quels sont les enseignements possibles vis-a-vis du placement des jobs les uns par rapport
aux autres? Et par rapport a un élément partagé?

3. Peut-on trouver une solution efficace pour résoudre ce probléme de partage de ressources
entre plusieurs jobs?

Références

[CEA, 2017] CEA (2017). Python framework for efficient cluster administration. http://cea-hpc.
github.io/clustershell/. Accessed : 2017-12-20.

[Hoefler, 2013] Hoefler, T. (2013). createlBNet : script de génération de topologies. http://htor.
inf.ethz.ch. Accessed : 2017-12-20.

[Ohring et al., 1995] Ohring, S. R., Ibel, M., Das, S. K., and Kumar, M. J. (1995). On generalized
fat trees. In Proceedings of the 9th International Symposium on Parallel Processing, IPPS '95,
pages 37—, Washington, DC, USA. IEEE Computer Society.

[Open Fabrics, 2017] Open Fabrics (2017). Ensemble d'outils pour gérer et administrer les réseaux
ib. https://wuw.openfabrics.org. Accessed : 2017-12-20.

11

nodes
http://cea-hpc.github.io/clustershell/
http://cea-hpc.github.io/clustershell/
http://htor.inf.ethz.ch
http://htor.inf.ethz.ch
https://www.openfabrics.org

	Notation et rendu
	Le rendu
	Barème des questions

	Apprentissage
	Connexion à la machine virtuelle
	Génération de la topologie
	Création des groupes
	Chargement de la topologie
	Dump des informations

	Génération de topologies
	Changement de routage et de topologie
	Génération d'un XGFT
	Sur une plus grande topologie

	Étude d'une topologie réelle
	Analyses des performances

