#Importation des éléments pour la régression logistique from sklearn.cross_validation import cross_val_score, train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics import numpy as np X=join[['temp','press','weekday','month','humidity','wind-avg','nebul','hour','dew-point']] y=join[['puissance']] # Initialisation des différents composants linreg = LinearRegression() list_ts = [a/20.0 for a in list(range(1,20,1))][1:] score = [] for ts in list_ts: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=ts, random_state=0) res=linreg.fit(X_train,y_train) y_pred=linreg.predict(X_test) score+=[res.score(X_test, y_test)] # Affichage des différents score max(score)