TD3: Les conditions et clés

Marc Pérache

27 mars 2009

1 Introduction

1.1 Définitions

Définition 1: Processus — Un processus est une "coquille” dans laquelle le systeme exécute chaque
programme (commande). Cette commande est un espace stir; en particulier chaque proces-
sus possede sa propre mémoire grace au mécanisme de mémoire virtuelle. Il possede un
numéro qui est unique sur le systéme, son pid, mais également un certain nombre de tables
qui lui sont propres, comme la table des descripteurs ou celle de gestion des signaux. Chaque
processus appartient a un utilisateur et un groupe et a les droits qui leur sont associés.

Définition 2: Thread — Un thread est une suite logique d’actions résultat de 1'exécution d’un pro-
gramme. Le contexte d"un thread comprend :
— une pile d’exécution,
— les contenus des registres matériels.
On peut donc dire qu'un processus contient un seul thread.

Définition 3: Section critique — Région du programme oul I'on souhaite limiter (généralement a
un seul) le nombre de flots d’exécution. Ces régions correspondent généralement a des zones
ou des invariants sur des données peuvent ne pas étre respectés.

Définition 4: Attente active — Méthode de synchronisation ot l'entité, attendant de passer cette
synchronisation, garde le contrdle du processeur.

Définition 5: Réentrance — Fait, pour une fonction, de pouvoir étre exécutée pendant son exécu-
tion. Une fonction sans effet de bord et travaillant uniquement avec des variables locales est
de fait automatiquement réentrante.

Définition 6: Mutex - Un mutex permet 'exclusion mutuelle et la synchronisation entre threads.

Définition 7: Sémaphore — Les sémaphores sont purement et simplement des compteurs pour des
ressources partagées par plusieurs threads.

Définition 8: Condition — Les conditions variables (condvar) permettent de réveiller un thread
endormi en fonction de la valeur d’une variable.

2 Conditions

2.1 Sémantique POSIX des conditions
PTHREAD_CONDY(3)

NANE
pt hread_cond_init, pt hr ead_cond_destr oy, pt hread_cond_si gnal
pt hread_cond_broadcast, pthread cond wait, pthread cond tinmedwait -
operations on conditions

SYNOPSI S
#i ncl ude <pt hread. h>
pt hread_cond_t cond = PTHREAD COND | NI Tl ALI ZER
i nt pt hread_cond_i nit (pt hread_cond_t *cond, pt hread_condattr _t
xcond_attr);
int pthread cond_signal (pthread cond_t *cond);
i nt pthread_cond_broadcast (pthread_cond_t =*cond);
int pthread cond wait(pthread cond t *cond, pthread nutex_ t =*nutex);
i nt pt hr ead_cond_t i nedwai t (pt hr ead_cond_t *cond, pt hr ead_nut ex_t
*MMut ex, const struct tinespec xabstine);
int pthread cond destroy(pthread cond t *cond);

DESCRI PTI ON

A condition (short for condition variable'’) is a synchronization
device that allows threads to suspend execution and relinquish the
processors until sone predicate on shared data is satisfied. The basic
operations on conditions are: signal the condition (when the predicate
becones true), and wait for the condition, suspending the thread exe-
cution until another thread signals the condition

A condition variable nmust always be associated with a nutex, to avoid
the race condition where a thread prepares to wait on a condition
vari abl e and another thread signals the condition just before the
first thread actually waits on it.

pthread cond_init initializes the condition variable cond, using the
condition attributes specified in cond _attr, or default attributes if
cond_attr is NULL. The LinuxThreads inplementation supports no
attributes for conditions, hence the cond_attr paraneter is actually
i gnor ed.

Variables of type pthread cond t can also be initialized statically,

RETURN

ERRORS

usi ng the constant PTHREAD COND | NI Tl ALI ZER

pt hread_cond_signal restarts one of the threads that are waiting on
the condition variable cond. |f no threads are waiting on cond, noth-
i ng happens. |If several threads are waiting on cond, exactly one is
restarted, but it is not specified which

pt hread_cond_broadcast restarts all the threads that are waiting on
the condition variable cond. Nothing happens if no threads are wait-
i ng on cond.

pt hr ead_cond_wai t atomically unl ocks t he nmut ex (as per
pt hread_unl ock_nutex) and waits for the condition variable cond to be
signaled. The thread execution is suspended and does not consune any
CPU tinme until the condition variable is signaled. The nutex nust be
| ocked by the calling thread on entrance to pthread_cond_wait. Before
returning to the calling thread, pthread_cond_wait re-acquires mutex
(as per pthread_Il ock_nutex).

Unl ocking the nutex and suspending on the condition variable is done
atomically. Thus, if all threads al ways acquire the nutex before sig-
naling the condition, this guarantees that the condition cannot be
signaled (and thus ignored) between the time a thread | ocks the nutex
and the tine it waits on the condition variable.

pthread_cond_tinedwait atom cally unlocks nutex and waits on cond, as
pt hread_cond_wait does, but it also bounds the duration of the wait.
If cond has not been signaled within the anount of tine specified by
abstime, the nutex mutex is re-acquired and pthread _cond_ti medwait
returns the error ETI MEDOUT. The abstime paraneter specifies an abso-
lute tine, with the same origin as tinme(2) and gettinmeofday(2): an
abstime of O corresponds to 00:00: 00 GMI, January 1, 1970.

pt hr ead_cond_dest r oy destroys a condition variable, freeing the
resources it mght hold. No threads must be waiting on the condition
variable on entrance to pthread cond destroy. In the LinuxThreads
i mpl ementation, no resources are associated with condition variables,
thus pthread _cond destroy actually does nothing except checking that
the condition has no waiting threads.

VALUE
Al'l condition variable functions return O on success and a non-zero
error code on error

pthread _cond_init, pthread cond signal, pthread cond_broadcast, and
pt hread_cond_wait never return an error code.

The pthread_cond_tinedwait function returns the followi ng error codes
on error:

ETI MEDOUT
the condition variable was not signaled until the tine-

out specified by abstine

EI NTR pthread_cond_timedwait was interrupted by a signa

The pthread_cond_destroy function returns the follow ng error code on
error:

EBUSY some threads are currently waiting on cond.

AUTHOR
Xavi er Leroy <Xavier.Leroy@nria.fr>

SEE ALSO
pt hread_condattr _init(3), pt hr ead_nmut ex_| ock(3),
pt hread_mut ex_unl ock(3), gettineofday(2), nanosl eep(2).

EXAMPLE
Consi der two shared variables x and y, protected by the nmutex nut, and
a condition variable cond that is to be signal ed whenever x becones

greater than vy.

int x,y;
pt hread_mut ex_t nut
pt hread_cond_t cond

PTHREAD _MUTEX_I NI Tl ALI ZER
PTHREAD_COND_| NI Tl ALI ZER

Waiting until x is greater thany is performed as foll ows:

pt hread_nut ex_| ock(&ut);
while (x <= vy) {

pt hr ead_cond_wai t (&ond, &mut);
}

[+ operate on x and y =*/
pt hread_nut ex_unl ock(&mut) ;

Modi fications on x and y that may cause x to becone greater than vy
shoul d signal the condition if needed:

pt hr ead_mut ex_| ock(&ut) ;
[+ nodify x and y =*/

if (x >y) pthread_cond_broadcast (&cond);
pt hr ead_mut ex_unl ock(&t) ;

If it can be proved that at nost one waiting thread needs to be waken
up (for instance, if there are only two threads communicating through
x and y), pthread_cond_signal can be used as a slightly nore efficient
alternative to pt hr ead_cond_br oadcast . In doubt , use
pt hr ead_cond_br oadcast .

To wait for x to becones greater than y with a tineout of 5 seconds,
do:

struct timeval now,
struct tinmespec tineout;
int retcode;

pt hr ead_mut ex_| ock(&t) ;
get ti nmeof day(&now) ;
timeout.tv_sec = now tv_sec + 5;
timeout.tv_nsec = now.tv_usec * 1000;
retcode = O;
while (x <=y && retcode != ETI MEDOUT) {
retcode = pthread cond _tinmedwait (&cond, &mut, &tinmeout);
}

if (retcode == ETI MEDOUT) {
/* timeout occurred */
} else {
/* operate on x and y =*/
}
pt hread_nut ex_unl ock(&mut) ;

Li nuxThr eads PTHREAD_COND(3)

2.2 Mise en place des conditions dans mthread

Le code ajouté dans mthread doit étre abondamment commenté!!!

Question 2.1: Mettre en place la fonction mthread_cond_init.
Question 2.2: Mettre en place la fonction mthread_cond_wait.
Question 2.3: Mettre en place la fonction mthread_cond_signal.
Question 2.4: Mettre en place la fonction mthread_cond_broadcast.

Question 2.5: Mettre en place la fonction mthread_cond_destroy.

2.3 Démonstration

Question 2.6: Pour chacune des fonctions précédentes, construire un progamme d’exemple qui teste leur
bon fonctionnement.

2.4 Bonus les clés posix

Question 2.7: Mettre en place la fonction mthread_key_create.
Question 2.8: Mettre en place la fonction mthread_key_delete.
Question 2.9: Mettre en place la fonction mthread_setspecific.
Question 2.10: Mettre en place la fonction mthread_getspecific.

Question 2.11: Pour chacune des quatres fonctions précédentes, construire un progamme d’exemple qui
teste leur bon fonctionnement.

