
05/04/2018 |  PAGE 1CEA | 10 AVRIL 2012

Gestion des environnements utilisateurs

Logiciel Cluster | Philippe GRÉGOIRE



Pile logicielle pour les utilisateurs

Matériel

Système d'exploitation

Biblio.
scientifiques

Gestion.
Ressources

Compilateurs
Intel, 
GNU, 
PGI

Profilers,
Debugers

Code Maison Code ISV Interface Web

Biblio.
I/O

Bibliot.
Message 
Passing

MaillageVisualisation

Filesystem
Interconnect

Outils 
de tests



Pile logicielle selon les nœuds

OS

Librairies Dyn

Agent mesure

Ressources Mgt

Librairies IO et //

User Interfaces

Nœud Login

OS

Librairies Dyn

Agent mesure

Ressources Mgt

Librairies IO et //

Dev  tools

Applications //

Nœud Calcul

OS

Librairies Dyn

Agent mesure

Routeur Réseau

Nœud IO

OS

Librairies Dyn

Agent mesure

Ressources Mgt

Service Config

Noms de domaine

Annuaire

Surveillance

Nœud service

Dev  tools

Vizu tools

Routeur FS //

User login, 
development, 
job lauch & 
monitor, result

No user login,
job execution, 
computation & 
I/O 

No user login, 
provide IO job 
service :
* network IO
* storage IO

No user login, 
provide system 
services :



Logiciels OpenSource



Quels logiciels

● Logiciels non fournis par des ISV
– Compilateurs
– Librairies de programmation MPI

– Librairies d'entrées/sorties
– Librairies mathématiques

– Outils de visualisation
– Utilitaires

● Chacun vient avec son environnement
– Variables d'environnement
– Man pages (MANPATH)

– Emplacement des commandes : PATH
– Emplacement des librairies : LD_LIBRARY_PATH



Compilateurs Intel

● Génère du code optimisé pour x86_64
● Package  Intel Parallel Studio 

– [C , C++, Fortran, MKL, DBG]

● Outil de profiling Vtune
● License



Compilateurs OpenSource

● GNU :  
– Front ends C, C++, Fortran, Ada, and Go,

– Back-ends  X86, X86-64, PowerPC, PowerPC-64, ARM

– https://gcc.gnu.org/

● LLVM
– Low Level Virtual Machine

– Infrastructure de compilation et optimisation 
indépendante du langage et du matériel

– Front-ends C, C++, Java, Fortran

– Back-ends  X86, X86-64, PowerPC, PowerPC-64, ARM

– https://llvm.org/

https://gcc.gnu.org/


Logiciels Message Passing

● MPI : Message Passing Interface
● Bibliothèque de fonctions  C, C++ et Fortran
● Standard de communication pour les programmes 

parallèles s’exécutant sur des clusters
● Communications point à point ou collectives, 

synchronisation, type de données.
● Open Source

– MVAPICH : http://mvapich.cse.ohio-state.edu

– OpenMPI : https://www.open-mpi.org/

http://mvapich.cse.ohio-state.edu/
https://www.open-mpi.org/


Logiciels Calcul Parallèle

● OpenMP : Open MultiProcessing
● Interface de programmation pour calcul parallèle sur 

architecture à mémoire partagée (intra nœud) 
● API prise en charge par les compilateurs C, C++ et 

Fortran
– Bibliothèques, directives, variables d'environnement

– Implémentations : GCC et Intel Compilers.

● Site : http://www.openmp.org/

Norme 3.0 3.1 4.0

GCC 4.3.1 4.7 4.9.1

INTEL 11 12.1 15

LVM N/A 3.7 3.7



Logiciels de représentation de données HDF5

● Hierarchical Data Format – version 5
● Définit un ensemble de formats pour 

– Structurer des gros volumes de données,

– Les sauvegarder dans des fichiers

● Deux types de données
– Dataset : tableaux multi-dimensionnels de données d'un 

meme type

– Groups : regroupement d'ensemble de données

● Organisation en structure hiérarchique
● Site : https://www.hdfgroup.org/

https://www.hdfgroup.org/


Logiciels de représentation de données 
NetCDF

● Network Common Data Form Version 4
● Format de données auto-décrit
● API d'accès aux données stockées sous forme de 

tableaux
● Support de HDF5
● Version parallèle : PnetCDF
● Site : https://www.unidata.ucar.edu/software/netcdf/

https://www.unidata.ucar.edu/software/netcdf/


Logiciels de visualisation de données 

● Paraview
– Outil d'analyse et de 

visualisation de données

– https://www.paraview.org
/

● Visit
– https://wci.llnl.gov/simu

lation/computer-codes/vis
it/

–

https://www.paraview.org/
https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/
https://wci.llnl.gov/simulation/computer-codes/visit/
https://wci.llnl.gov/simulation/computer-codes/visit/


Applicatifs

● Codes scientifiques
● VASP : Vienna Ab initio Simulation

– Code de simulation des matériaux à l'échelle atomique

● NAMD : Nanoscale Molecular Dynamics
● Voir :https://hpc.uni.lu/users/software/legacy_software_2017.html

https://hpc.uni.lu/users/software/legacy_software_2017.html


Rappel de base sur l'environnement



Environnement ?

● Ensemble de variables/valeurs influençant 
l'exécution des commandes

● Ensemble initialisé au début d'une session 
utilisateur par le shell (et son père)

● Ensemble propagé de processus parent à 
processus enfant lors du fork/exec. 

int execve(const char *filename, char *const argv[],

        char *const envp[]);



Environnement

● Variables d'environnement positionnées par bash
– SHELL

– TERM

– USER, UID

– PWD, OLDPWD

– MAIL

– PATH

– LANG

– HOME



Voir son environnement

● /bin/env
● /bin/printenv [variable]



Modifier son environnement

● Export WORKDIR=/work/ 



Environement : man pages

● Man 7 environ
● Man 3 getenv
● Man 3 putenv
● Man 3 setenv
● Man 3 clearenv
● Man 3 execve



Environnement : de parent en enfant

● Trois arguments :
– Argument count

– Argument values

– Environment pointer

● Toujours au moins un 
argument 
– Le nom du programme

● Arguments
– Un tableau de chaînes de 

caractères



Environnement : de parent en enfant

● L'environnement :
– Un tableau de chaînes 

de caractères



Voir l'environnement d'un processus

● Le kernel donne une visibilité des processus dans 
un pseudo filesystem /proc



Mécanisme de bases 
pour le gestion d'environnement



Variables d'environnement

● PATH  (Bash & co)
– Liste de répertoires séparés par un caractère ' :'

– Le shell parcourt cette liste de gauche à droite

● MANPATH  (commande man)
– Liste de répertoires séparés par un caractère ' :'

– La commande man cherche les pages de manuel dans 
chacun de ces répertoires.



Variables d'environnement applicatives

● Les applications gèrent souvent leurs propres 
variables d'environnement.

● <APPLI>[_]HOME
– Donne le répertoire racine de l'installation de l'application

● <APPLI>[_]PATH :
– PATH spécifique à l'application

● Exemple : PYTHON : 
– PYTHONPATH, PYHTONHOME



Fonctionnement du loader



Le LOADER Linux ld.so

● Un programme compilé utilise des librairies 
dynamiques sauf si compilé avec -static.

● ld.so initie l’exécution d'un programme binaire.
● Cherche et charge les librairies dynamiques 

utilisées par un programme et le lance.
● Résout les dépendances entre les librairies 

dynamiques.
● Comprend le format ELF



Recherche des librairies par ld.so

● Le nom de la librairie contient un ' /', c'est un path
– ld.so charge le fichier (relatif ou absolu)

● Le nom de la librairie ne contient pas un ' /' :
– DT_RPATH présent et  DT_RUNPATH absent :

● Cherche dans les répertoires donnés par DT_RPATH

– Cherche dans les répertoires donnés par la variable 
d’environnement  LD_LIBRARY_PATH

– DT_RUNPATH présent :
● Cherche dans les répertoires donnés par DT_RUNPATH.

– Cherche dans le cache : /etc/ld.so.cache

– Cherche dans /lib puis /usr/lib



Recherche des librairies par ld.so

● Les paquets peuvent installer des librairies ailleurs 
que /lib ou /usr/lib 

● La commande ldconfig génère le cache :
– Fichier /etc/ld.so.conf

– Répertoires /etc/ld.so.conf.d/*

● Les paquets installent un fichier dans /etc/ld.so.conf.d



Édition de liens

● La commande /bin/ld assemble un ensemble de 
fichiers *.o en un programme binaire au format ELF

● Généralement appelée par le compilateur :
– Gcc foo.o bar.o -o foobar [ -Wl,-rpath=…  ]

● L'option -rpath=dir crée une section DT_RPATH
● L'option -rpath=dir  utilisée avec l'option --enable-

new-dtags crée une section DT_RUNPATH
● DT_RPATH est obsolète (deprecated) et ne devrait 

plus être utilisé (en théorie)



Variables d'environnement pour le loader

● LD_LIBRARY_PATH : 
– liste de répertoires séparés par ' :'

– Ignoré si le programme a un setuid/setgid bit.

● LD_PRELOAD
– Liste de librairies séparés par ' :'

– Chargées avant toutes les autres

– Sert à modifier le comportement d'une librairie

● See :
– Man 3 dlopen dclose dlsym

– Man 1 ld  ldd readelf objdump

– Man 8 ld.so ldconfig



Module



Modules

● Outil de gestion dynamique de l’environnement des 
utilisateurs,

● Positionne/ supprime les variables d ’environnement 
nécessaire d’un « logiciel » 

● Permet de gérer sur un même système plusieurs 
versions d ’un même outil

● Un utilisateur peut créer ses propres modules
● Plusieurs générations/concurrents de "module" :

– Module-C, Lmod, module-tcl



Modules

● Supporte les interpréteurs les plus courants :
– bash, ksh, zsh, sh, csh, tcsh, fish,

● Intégration de l'outil module dans l'environnement 
utilisateur :
– /etc/profile

– /etc/profile.d/modules.sh

– /etc/profile.d/modules.csh

● Offre une API pour certains langages :
– tcl, perl, python, ruby, cmake, R.



Module : charger un module

● module load | add



Module : voir les modules disponibles

● module available



Module : afficher les modules chargés

● module list



Module : décharger un module

● module unload | rm



Module : échanger deux modules

● module switch | swap



Module : s'informer sur un module

● module show | display 
● module whatis 
● module apropos



Module : nettoyer son environnement

● module purge



Module : dans un job ?

● Module est initialisé pour les sessions interactives
● Pour un job batch : charger le fichier 

/etc/profile/modules.sh
● Slurm peut le faire dans ses prologues



Module : toolchain

● Toolchain : ensemble d'outils qui forment un 
ensemble cohérent de développement.

● Sont utilisés pour compiler les autres packages.
● Les packages compilés avec le même toolchain 

(toolchain+ version) peuvent travailler ensemble.
– Pas de conflit d'environnement

– Pas d’incompatibilité de librairies



Module : toolchain Intel

● Intel toolchain :
– Compilateurs intel c, c++ et fortran : icc, ifort

– Librairie MPI intelMPI : mpicc, mpifort

– Librairie mathématique Intel : MKL



Module : toolchain Foss

● Foss toolchain :
– Compilateurs GNU : gcc, gfort

– Librairie MPI OpenMPI : mpicc, mpifort

– Librairies mathématiques : OpenBlas, Lapack, 
ScaLapack, FFTW



Comment installer efficacement 
de nombreux logiciels ?



Problématique

● L'OpenSource facilite l'utilisation 
de composants logiciels

● En R&D, les prototypes 
nécessitent de nombreux essais 

● Les logiciels HPC doivent 
s'exécuter  dans des 
environnements différents

● Importance du choix des 
composants, de leurs options

● Importance de la reproductibilité
● Importance de la tracabilité



Problématique

● Interdépendances des logiciels OpenSource
– Composants haut niveau

– Librairies numériques

– Version de langage (python, C++)

– Chaînes de développement

– Outils divers

● La demande est toujours plus forte
– Les ressources restent les mêmes

– Activé chronophage



Installation multi-version par rpm
Une solution ?



Installation de plusieurs rpm

● Rpm ne permet pas l'installation de plusieurs 
versions (sauf kernel)

● La version la plus récente remplace la précédente
● Solution

– Changer le nom du paquet pour inclure la version :
● Newname = pkgname+pkgvversion

– Changer les répertoires d'installation

● Exemple : python
– Version 2 : Rpm python-2.X.Y install standard

– Version 3 : Rpm python3-3.Z.T



Installation de plusieurs rpm

● Configurer yum :
–  Installonlypkgs : donne la liste des paquets à ne jamais 

mettre à jour

–  installonly_limit : donne le nombre maximum de 
versions à installer (pour un paquet)

– Attention quand la limite est atteinte !

– Man 8 yum.conf



Méthode RPM

● Trop limitée
● Nécessite une modification des specfiles
● Nécessite les droits root
● Impossible de déléguer l'activité



Framework de génération de logiciels



EasyBuild

● Automatisation de génération/installation de 
logiciels scientifiques

● Flexible et configurable (build recipes)
● Résout automatiquement les dépendances
● Génération automatique des modules associés
● Bonne documentation,
● Large communauté d'utilisateurs
● Parfois un peu compliqué à customiser
● Concurrent : SPACK 



EasyBuild : Terminologie

● EasyBuild framework
– Moteur d'EasyBuild

– Enchaine les étapes nécessaires pour l'installation d'un logiciel

● EasyBlock :
– Module python, greffon (plugin) dans le framework EasyBuild

– Définit comment générer et installer un logiciel

● Easyconfig :
– Fichiers de configuration (*.eb) pour l'installation d'une version 

donnée d'un logiciel

● Toolchain
– Ensemble cohérent d'outils de compilation et librairies



EasyBuild : commandes de base

● eb –list-easyblocks – lists available easyblocks
      |-- ConfigureMake
      |   |-- CMakeMake
      |   |-- EB_GROMACS

● eb –list-toolchains – lists available toolchains
      goolf: BLACS, FFTW, GCC, OpenBLAS, OpenMPI, ScaLAPACK

● eb –S pkgname – search for package easyconfig
      eb -S GROMACS
      * $CFGS1/GROMACS-4.6.5-goolf-1.4.10-hybrid.eb

● eb pkgname -r –install package with 
dependencies (-r)



Un easyblock pour construire Flex 



Encore des easyblocks !



EasyBuild : Pro & Cons

● Pros
– Conçu pour l'écosystème HPC

– Supporte les logiciels propriétaires : Intel, Nvidia, ...

– Large communauté : Beaucoup easyblock disponibles

– Ré-utilisabilité

– Gestion des dépendances automatiques

● Cons
– Accès Internet (bootstrap)

– Gére mal la combinatoire

– 1 fichier par combinaison software / toolchain



Evolution de l'architecture

● EasyBuild facilite la génération/installation des 
logiciels
– Mutualisation des procédures,

– Mutualisation des produits générés.

● La génération des environnements utilisateurs est 
chronophage :
– Demandes d'installation de nouvelles versions

– Gestion de la combinatoire avec les toochains

– Gestion des conflits lors de l'utilisation

– Suivi des logiciels installés



Evolution de l'architecture

● Les utilisateurs travaillent dans de nombreux 
environnements
– Dans leurs entreprises

– Dans plusieurs centres de calcul

● Un environnement applicatif =
– Une distribution Linux

– Un ensemble de logiciels

– L'application



Evolution de l'architecture

● Solution : Les 
utilisateurs fournissent 
leur application avec 
l'environnement 
adéquat.
– Containers (Docker)

– Machines virtuelles

● A eux de construire 
leurs piles logicielles :-)


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62

