!'_ Compilation : le Middle End

Patrick Carribault
patrick.carribault@cea.fr

i Organisation du cours

= Responsable de cours
« Patrick Carribault (patrick.carribault@cea.fr)

= Intervenants
= Julien Jaeger (julien.jaeger@cea.fr)
« Antoine Capra (antoine.capra@atos.net)

= Evaluation
= Projet en bindbme

Projet

= Theme
« Validation statique/dynamique de programmes MPI

Evaluation en binbme
= Rapport (dizaine de pages)
= Soutenance (10 présentation + 10 minutes démonstration + 10 minutes questions)

Dates clefs
= Liste des binbmes : 18/09 (aujourd’hui !)
= Rendu du rapport + code source : 23/10
= Soutenance : 23/10

Conseils

= Les TPs suivent globalement le projet < projet a travailler au fur et a mesure du
déroulement du module !

= Bien faire les parties obligatoires du projet
= Vérifier et valider le code source avec plusieurs exemples

i Plan du cours

= Présentation de GCC

= Introduction
= Structure générale
= Installation
= Modification du compilateur
= Plugin
= Evénement
= Pass manager
= Manipulation du code

= Structures GIMPLE
= Structures CFG

‘L Plan du cours

= Présentation de GCC
= Introduction

i Chaine de compilation GNU

= GCC : GNU Compiler Collection
= Historiqguement GNU C Compiler

= Ensemble d’outils et de bibliotheque
pour la compilation

= Plusieurs langages, plusieures architectures
= Générateur de compilateurs !

= Disponible sous licence GPL
= http://gcc.gnu.org

= Support principal des TDs/TPs |

i Survol des fonctionnalités

= Langages supportés
= C, C++
= Objective-C, Objective-C++
= JAVA,
= Fortran
= ADA

= Processeurs supportés
= ARM, IA-32 (x86), x86-64, IA-64, MIPS, SPARGC, ...

= Systeme de plugins pour ajouter/modifier des passes
de compilation

‘L Plan du cours

= Présentation de GCC

= Structuré générale

& Architecture de GCC

Programme
source

Programme
cible

* Architecture de GCC

Source C/CH RIC
code
Selt_acte_d at Generated at
build time build time
Assembly AS RTL Rt
code

© Uday Khedker, Indian Institute of Technology, Bombay

GIMPLE

GIMPLE

10

Transformations dans GCC

s GCC possede un total de 203 passes de
transformations

= Le nombre total de passes effectuees lors
d’'une compilation est 239
0 fCertaines transformations sont appelées plusieurs
OIS
= Pour I'enchainement des transformations sur

les représentations intermédiaires, GCC utilise
un pass manager

= Situé dans les fichiers ${SOURCE}/gcc/passes.c et
${SOURCE}/gcc/passes.def

11

Historique de GCC

0.9 : 22 Mars 1987
. Premiére version beta
GCC 1.0 : 23 Mai 1987

GCC 3.0 : 18 Juin 2001
= Ajout du support du langage JAVA
GCC 4.0 : 20 Avril 2005
= Ajout de la branche tree-ssa
= Ajout de I'algorithme de pipeline logiciel Swing Modulo Scheduling (SMS)
. Représentation intermédiaire GIMPLE
GCC 4.2.0 : 13 Mai 2007
= Support de OpenMP pour C, C++ et Fortran
GCC 4.5.0: 14 Avril 2010
= Optimisations au /ink (LTO)
GCC 4.6.0 : 25 Mars 2011
. Réduction de I'empreinte mémoire / meilleure exploitation du cache
= Ajout de nouveau langages : CAF et GO
GCC4.7.0: 22 Mars 2012
= OpenMP 3.1
= Standard C++11
GCC 4.8.0: 22 Mars 2013
. Programmation en partie en C++ 2003
= Support intégral du standard C++11

12

Historique de GCC

GCC 4.9.0 : 22 Avril 2014
. OpenMP 4.0
= Amélioration des diagnostiques (incluant de la couleur)
Support expérimental pour C++14
Go 1.2.1
Support AVX-512
C 5.1 : 22 Avril 2015
Amélioration du support C++ 14
OpenMP 4.0 offloading
Implémentation préliminaire pour OpenACC 2.0
Support spécifiques pour les architectures Intel Xeon Phi
Go 1.4.2
C 5.2 : 16 Juillet 2015
Support du mot clé « vector »
Support amélioré pour les instructions AMD
Support du processeur IBM z13

GC
C

GCC 5.3 : 4 Décembre 2015
C
C

G

Support du processeur Intel Skylake avec AVX-512

Support des processeurs IBM z pour le langage GO
C6.1:27 Avril 2016

OpenMP 4.5

Amélioriation du support de OpenACC 2.0

Support expérimental pour C++ 17
C 6.2 : 22 Aolit 2016

Support SPARC

G

G

13

Historique de GCC

= GCC7.1:2Mail 2017
= GCC7.2:14 Aot 2017
m GCC 7.3 : 25 Janvier 2018

= Amélioration des avertissements
= Proposition de noms dans le cas d’une typo (changement au niveau des front-ens)
= Support expérimental du c++17

A;]out de la génération de code pour plusieurs processeurs ARM (e.g., Cavium
ThunderX)

= Possibilité d'utiliser les GPU Nvidia avec OpenMP 4
= Ajout du jeu d’instruction RISC V

= GCC8.1: 2 Mai 2018

s GCC8.2: 14 Juillet 2018

= Support expérimental du C++2a
= Amélioration du C++17
= Support du jeu d’instruction vectoriel ARM SVE

14

Evolution de la taille de GCC

Count GCC4.3.0 |GCC4.4.2 |GCC4.5.0

Main source 2,029,115 2,187,216 | 2,320,963

Lines | Libraries 1,546,826 | 1,633,558 | 1,671,501
Subdirectories 3,527 3,794 4,055
Number of files 57,660 62,301 77,782
C source files 15,477 18,225 20,024

Files Header files 9,646 9,213 9,389
C++ files 3,708 4,232 4,801
Machine 186 206 229
description

(Line counts estimated by David A. Wheeler’s sloccount program)

15

Taille de GCC 4.6.2

e

Language Files Code Comment Comment % Blank Total
C 13624 2106311 4452388 17.5% 410325 2070024
PP 22206 920008 230376 18.0% 215730 1435213
java 6342 681038 645505 48.6% 169046 1406480
ada 4616 680251 316021 31.7% 234551 1230823
autoconf 91 405517 500 0.1% 62019 468045
html 457 168378 5660 3.3% 38146 212163
make 03 121136 3658 2.0% 15555 1403490
fortranfoced 2080 100688 1950 1.0% 13804 116532
shell 148 43032 10451 17.0% 6586 65060
assembler 208 46750 10227 17.0% 7854 64831
wml 5 36178 282 0.8% 3827 40287
objective_c £60 28040 5023 15.2% 8124 41106
fortranfree 831 13006 3204 18.6% 1728 18028
tex 2 11060 776 34.3% 1433 18269
scheme 6 11023 1010 8.4% 1205 13238
automake 67 0442 1039 0.0% 1457 11938
perl 28 4445 1316 22.8% 837 6508
ocam| 6 2814 576 17.0% 378 3768
wslt 20 2805 435 13.5% 563 3804
awk 11 1740 306 18.5% 257 2303
python 10 1725 322 15.7% 333 2430
Css 24 1589 143 8.3% 332 2064
pascal 4 1044 141 11.0% 218 1403
csharp ¥ aro 506 36.5% 230 1615
dcl 2 402 B4 17.3% 13 400
tcl 1 302 113 22.4% T2 577
Javascript 4 341 a7 20.3% 35 463
hzskell 49 153 0 0.0% 17 170
bat 3 7 a 0.0% 0 T
matlab 1 5 0 0.0% 0 5
Total 57801 5476188 1600108 23.6% 1204724 8371020

16

Transformations GIMPLE

Pass Group Number of passes

Lowering 12
Interprocedural optimizations 49
Intraprocedural optimizations 42
Loop optimizations 27
Remaining intraprocedural 23
optimizations

Generating RTL 01
Total 154

17

Transformations RTL

Pass Group Number of passes
Intraprocedural Optimizations 21
Loop optimizations /
Machine Dependent 54
Optimizations
Assembly Emission and Finishing 03
Total 85

18

i Préprocesseur

CPP : Gestion des directives de précompilation

n Syntaxe des directives
= #keyword

= Exemple de directives
« #ifdef
= #include
= #warning
= #error

= Explosion de la taille du code apres preprocessing

= Attention #pragma n’est pas traité par le
préprocesseur

19

i Front-end

Lecture du fichier source en entrée
= C, C++, Fortran, Java, C#, ...
= Veérification de la validité du code
= Analyse lexicale
= Analyse syntaxique
= Analyse sémantique
= Cf. CPA cours 1
= Chaque front-end est dans un répertoire différent :
=« C, ObjectiveC > ${SOURCE}/gcc/c/, ${SOURCE}/gcc/c-family/
= C++ > ${SOURCE}/gcc/cp/, ${SOURCE}/gcc/c-family/
« Fortran 2> ${SOURCE}/gcc/fortran/
= En sortie, le code est représenté en GENERIC
= Sauf pour C/C++ qui génere directement du GIMPLE

20

GENERIC

Représentation intermédiaire sous forme d‘arbre
Indépendant du langage source

Processus de création d’'une représentation GENERIC

= Génération de I'arbre de syntaxe abstraite par le parser
= Le parser peut garder cette représentation
= Suppression des constructions spécifiques au langage

= Emission de I'arbre GENERIC a la fin de la phase de parsing

Tous les noeuds sont définis dans
$(SOURCE)/gccl/tree.def

= Notion de tree codes

21

Middle-end

= Optimisation haut niveau
= Indépendante de I'architecture

= Granularités
= Optimisation par fonction
= Optimisation par boucle
= Optimisation inter-procédurale

= Ordre des transformations géré par le pass manager
de GCC

= Travail sur une représentation intermédiaire nommeée
GIMPLE

= En conjonction avec d'autre RIs (par exemple CFG)
- Détails dans le prochain cours

22

i GIMPLE

= Représentation intermédiaire de haut niveau
= Introduite dans GCC 4.4
= Basée sur une représentation avec un arbre
= Nceud avec une sémantique

= Sous-ensemble simplifi€ de GENERIC
= Représentation 3-adresses
= Aplatissement du flot de controle
= Simplifications et nettoyage (la grammaire est restreinte)
= Transformation de GENERIC vers GIMPLE
= gimplify_function_tree() dans le fichier gimplify.c
= Deux niveaux de GIMPLE
« High GIMPLE
« Low GIMPLE

23

GIMPLE — Exemple en C

= Exemple simple
= Langage C
= Une seule fonction main

= Compilation avec sortie des
fichiers intermédiaires :
= gcc —fdump-tree-all
test.c

= Génération de la représentation
GIMPLE entre les
transformations

int main() {
iIntx =10 :
if (x) {
inty=5;
X = X*y+15;

}

24

GIMPLE — Exemple en C

Fichier test.c:

v

int main() {
intx =10 ;
if (x) {
inty=5;
X = X*y+15;
}
}
= Déclaration de temporaires
= D.2720
= Simplification pour le code 3
adresses

= D.2720 = x*y
= Flot de controle avec goto

Fichier test.c.004t.gimple:

main() {
int D.2720;
int x;
x=10;
if (x!=0) goto <D.2718>;
else goto <D.2719>;

<D.2718>:
{ .
inty;
y=5;
D.2720 = x*y,
X =D.2720+15
}
<D.2719>:

25

GIMPLE — Exemple en C

= Génération du code GIMPLE

. gcc —fdump-tree-all-raw test.c

Fichier test.c.004t.gimple:

main() {
int D.2720;
int x;
x=10;
if (x!=0) goto <D.2718>;
else goto <D.2719>;

<D.2718>:
{ .
inty;
y=5;
D.2720 = x*y;
x =D.2720+15
}
<D.2719>:

Fichier test.c.004t.gimple:

main()
gimple_bind <

int D.2720;

int x;
gimple_assign<integer_cst,x,10,NULL
>

gimple_cond <ne_expr, X, 0,
<D.2718>, <D.2719> >
gimple_label <<D.2718>>
gimple_bind <
inty;
gimple_assign<integer_cst, y,
5, NULL>
gimple_assign<mult_expr,
D.2720, x, y>
gimple_assign<plus_expr,x,
D.2720,15>
>

gimple_label<<D.2719>>

26

‘L GIMPLE — Exemple en C

Fichier test.c.004t.ginple: Fichier test.c.011lt.cfg

main() { main() {
int D.2720; inty;
int x; int x;
x=10; int D.2720;

if (x!=0) goto <D.2718>;

else goto <D.2719>; <bb2>:

<D.2718>: x=10;

{ if (x!=0) goto <bb 3>;
inty; else goto <bb 4>;
y=5;

D.2720 = x*y; <bb 3>:
x = D.2720+15 y=5;

} D.2720 = x*y;

<D.2719>: x=D.2720+15;

<bb 4>:
return ;
}

27

GIMPLE - free code

Tous les tree code de GCC
152) sont listés dans
; (SOURCE)/gccl/tree.de

Binary Operator

= MAX EXPR
Comparison

= EQ EXPR, LT EXPR
Constants

= INTEGER CST, STRING CST
Declaration

= FUNCTION DECL, LABEL
DECL , VAR DECL

Expression
= PLUS EXPR, ADDR EXPR

Reference
= COMPONENT REF, ARRAY
RANGE REF
Statement

« GIMPLE MODIFY STMT,
RETURN EXPR, COND EXPR,
INIT EXPR

Type
= BOOLEAN TYPE, INTEGER
TYPE

Unary
= ABS EXPR, NEGATE EXPR

28

GIMPLE - Transformations

= Un compilateur comporte un grand ensemble de
transformations de haut niveau

= Notion de middle-end

= On peut citer quelques exemples :
= Déroulage de boucle
= Vectorisation
= Factorisation de code

= Les compilateurs introduisent des options pour définir
des ensembles de transformations

= -02,-03, ...
= Dans quel ordre utiliser ces transformations ?

29

i Pass Manager

s GCC utilise un pass manager pour enchainer
les difféerentes transformations

= Dépendant du niveau d’optimisation
= Ainsi que des options de compilation

= Depuis GCC 4.5

= Souplesse du pass manager

= Possibilité de créer des plugins pour ajouter une
transformation

= Détails dans le prochain cours

30

i Pass Manager

s Construction d’'un arbre de transformations
dans la fonction
init_optimization_passes() dans le
fichier passes.c

= Exemple : lowering passes
NEXT_PASS(pass _warn_unused_results)
NEXT_PASS(pass_diagnose_omp_blocks)
NEXT_PASS(pass _mudflap 1);
NEXT_PASS(pass_lower _omp);
NEXT_PASS(pass_lower_cf);

31

i Back-end

= Roles principaux
= Optimisations dépendantes de I'architecture
= Génération finale du code assembleur

= Travaille sur une représentation intermédiaire
nommeée RTL

« Register Transfer Language

= Utilise une représentation de la machine
= Notion de machine description

32

i RTL

= Briques de base : object RTL
= EXxpressions
= Integers
= Wide integers
= Strings
= Vectors
= Chaque expression a un code

= La liste des codes est défini dans le fichier
rtl.def

= Macro pour connaitre le code d'une expression :
GET_CODE(x)

33

i RTL

= Exemple d'affectation

DEF_RTL_EXPR(SET, “set”, “ee”,
RTX_EXTRA)

= Deux opérandes

1.
2.

Destination (registre, mémoire, ...)
Valeur

= Macro

1.
2.
3.

1.

Nom interne (majuscules par convention)
Nom ASCII (minuscules par convention)

Format d’affichage (documenté dans rtl.c)
‘e’ définit un pointer vers une expression

34

!_h RTL
ple : expression b
contenu dans le reg <1 60

. (insn 7 6 8 test.c:2 (set
(reg:S1 59)
(plus:Sl (reg:Sl1 60)

(const_int 3 [OX
-1 (nil))
35

‘L Plan du cours

= Présentation de GCC

= Installation

36

i Installation de GCC

= Site web (documentation, téléchargement, ...)
= GCC : http ://gcc.gnu.org/
= Version 8.2 actuellement

= Dépendances (bibliotheques)
= GMP
= MPFR
= MPC

= Configuration

= Création d’un sous-répertoire travail

configure --prefix=chemin-vers-travail --enable-| anguages=c,C++ --
enable-plugin

= Compilation
= Mmake && make install

37

Installation de GCC

= Apres I'étape make install
= GCC est installé dans le répertoire donné avec l'option —
prefix lors de la configuration
= Utilisation
= Modification du PATH
export PATH=chemin-vers-travail/bin:$PATH
= gcc -v devrait vous donner la version 8.1 et la ligne de
configuration que vous avez mis
= Modification du compilateur

= On modifie ce qu’on veut et ensuite
make && make install

38

Documentation de GCC

= Documentation principale
= Le code de GCC

= Important : il faut pouvoir lire le code de GCC pour comprendre
comment cela fonctionne

= Ne pas hésiter a parcourir les fichiers sources du cceur du
compilateur

= Souvent la solution existe dans une autre partie de GCC

= Autre documentation de référence
=« The GCC internals
= http ://gcc.gnu.org/onlinedocs/gccint/Plugins.html#Plugins

= Exemple du PDF...

39

‘L Plan du cours

= Modification du compilateur
= Plugin

40

Modification du compilateur

Catégories de modifications
= Corrections de bugs
= Ajout de fonctionnalités
Ajout de fonctionnalités
= Nouveau langage en entrée
= Nouvelle architecture cible
= Nouvelle passe (analyse/transformation/optimisation)
Comment faire des modifications dans le compilateur GCC ?
= Nouveau Front-end
= Nouvelle description d‘architecture (rmachine description)
= Nouvelle passe
Comment ajouter une nouvelle passe ?
= Ajout direct dans le cceur du compilateur
= Programmation d’un plugin externe

41

i Description d’un plugin

n Plugln
= Bout de code chargé par le compilateur au moment de la compilation d’un fichier
= Sous forme de bibliotheque dynamique
= Interaction avec le coeur du compilateur

= Contenu minimal d'un plugin
= Initialisation : fonction prédéfinie qui retourne 0 si tout se passe bien

= Licence GPL : déclaration d'une variable globale prédéfinie
int plugin_is_GPL_compatible ;

= Etapes
1. Compilation du plugin en une bibliotheque dynamique

>. Exécution
« Lors de la compilation d’un fichier : renseigné I'utilisation d’'un plugin
« Possibilité de mettre des arguments

42

Initialisation d'un plugin

= Fonction d'initialisation du plugin
= int plugin_init (
struct plugin_name_args *plugin_info,
struct plugin_gcc_version *version
);
= Chaque plugin doit implémenter cette fonction
= Point d’entrée
= Fonction main dans le coeur du compilateur

= Lors de la phase d'initialisation des plugins, le compilateur
appelle la fonction plugin_init e tous les plugins (de
facon sequentielle)

= Ou est définit ce prototype ?
=« Dans le header gcc-plugin.h

43

$ Plugin minimal

Binclude <gcc-plugin.h>
int plugin is GPL compatible ;
int

plugin init (struct plugin name args *plugin info,
struct plugin gcc version *version)
{

printf{ "Initialization of my pluginin") ;

44

Compilation d'un plugin

= Etape 1 : compilation separee des fichiers
appartenant au plugins
= Besoin du chemin ou sont stocker les headers servant au
plugin (comme gcc-plugin.h)
= Commande : gcc -print-file-name=plugin
= Donne le répertoire de base pour les fichies qui concernent les
plugins
= Besoin d'ajouter le sous-répertoire include pour la recherche
de header (option —I pour le compllateur)

o EtaFe 2 : link de ces fichiers pour créer une
bib theque dynamique
= Utilisation de I'option —shared
= Extension par convention : .so

45

‘L Compilation d’un plugin

carribaultp$ gcc -print-file-name=plugin
/media/sf PartageVM/GCC/gcc install/lib/gcc/1686-pc-linux-gnu/4.7.1/plugin
carribaultp$ gcc -I/media/sf PartageVM/GCC/gcc install/lib/gcc/i686-pc-linux-gnu/4.7.1/plugin/include -c plugin.c

carribaultp$ gcc -shared -o plugin.so plugin.o

carribaultp$ gcc -print-file-name=plugin

/media/sf PartageVM/GCC/gcc install/lib/gcc/1686-pc-linux-gnu/4.7.1/plugin
carribaultp$ gcc -I'gcc -print-file-name=plugin’/include -c¢ plugin.c
carribaultp$ gcc -shared -o plugin.so plugin.o

46

Exécution d’'un plugin

= Pas d’exécution directe d'un plugin
= Fonction main dans le compilateur
= Plugin contrélé par le compilateur
= Le compilateur connait un point d’entrée pour le plugin

(fonction d'initialisation avec un prototype forcé)

= Option pour renseigner un plugin a utiliser lors de la
compilation

-fplugin=name

L'argument name est le nom de la bibliotheque dynamique
contenant le plugin (e.g., plugin.so)

Possibilité d'utiliser plusieurs plugins !

47

i Exécution d’un plugin

Binclude <gcc-plugin.h>
int plugin is GPL compatible ;
int

plugin init (struct plugin name args *plugin info,
struct plugin gcc version *version)
{

printf{ "Initialization of my pluginin") ;

48

‘L Exécution d’un plugin

carribaultp$ cat test.c
#include <stdio.h>

void () {
printf("In f\n") ;:
}

vold g() {
printf{ "In g\n") ;

I
carribaultp$ gcc -fpluglin=./plugin.so -c test.c
Initialization of my plugin

49

i Structures d’initialisation

= Rappel : fonction d'initialisation du plugin
Int plugin_init (

struct plugin_name_args *plugin_info,
struct plugin_gcc_version *version
)
= Deux arguments en entrée de la fonction
= Arguments fournis par le compilateur

= Correspond a deux pointeurs sur des structures
= Information sur le contexte d’exécution
= Définition dans le header gcc-plugin.h

50

Information sur GCC

= Second argument : informations sur le compilateur
qui exéecute ce plugin

= Détail de cette structure
struct plugin_gcc_version

{

const char *basever,

const char *datestamp;

const char *devphase,

const char *revision;

const char *configuration_arguments;

Information sur GCC

#include <gcc-plugin. h>
int plugin is GPL compatible ;

int plugin ipit (struct plugin name args *plugin info,
struct plugin gcc version *version) {

printf({ "Plugin initialization:\n")
printf("\tbasever = %s\n", version->basever) ;
printf("\tdatestamp = %s\n", version->datestamp) ;
printf("\tdevphase = %s\n", version->devphase) ;
printf("\trevision = %s\n", version-=revision) ;
printf("\tconfig = %s\n", version->configuration arguments) ;

return @ ;

}

carribaultp$ gcc -fplugin=./plugin.so -c test.c
Plugin initialization:
basever = 4.7.1
datestamp = 201208614
devphase =
revision =
config = /media/sf PartageVM/GCC/gcc-4.7.1/configure --disable-bootstrap --prefix=/media/sf PartageVM/GCC/gcc install/ --enable-languages=c,c++, fortran

52

i Information sur le plugin

Détail de cette structure

struct plugin_name_args {

char *base _name; /* Short name of the plugin
(filename without .so suffix). */

const char *full_name; /* Path to the plugin as spe
with -fplugin=. */

int argc; /* Number of arguments specified with
-fplugin-arg-.... */

struct plugin_argunent *argv; /* Array of ARGC
key-val ue pairs. */

const char *version; /* Version string provided by
plugin. */

const char *help; /* Help string provided by plugin

cified

¥

Premier argument : informations sur le contexte d’‘exécution du plugin

53

Information sur le plugin

= Le champ argv représente les arguments donnés au plugin lors
de l'exécution de la compilation

= Option : -fplugin-arg-name-keyl[=valuel]

= Nom du plugin (sans le chemin, ni I'extension .so) : name
= Nom de I'argument : keyl

= Valeur de I'argument (optionnelle) : valuel

= Structure pour accéder aux arguments
struct plugin_argument {
char *key; /* key of the argument. */
char *value; /* value is optional and
can be NULL. */

54

‘L Information sur le plugin

#include =<gcc-plugin.h=
int plugin is GPL compatible ;

int plugin init (struct plugin name args *plugin info,
struct plugin gcc version *version) {

;o o S B
printf{ "Plugin initializatinn) el B
printf("\tbase name = %s\n", plugin info->base name) ;

printf(”Rtfull name = %s\n", plugin info- }fult name) ;
printf(”Htargc = %d\n",plugin info- ->arge) ;
for (1 =0 ; 1< plugin info-=argc ; i+) {
printf{ "\t\tArg %d: %s = %s\n", 1i,
plugin info->argv[i].key,
plugin info-=argv[i].value) ;
}
printf("\tversion = %s\n", plugin info-=>version) ;
printf({ "\thelp = %s\n", plugin info->help) ;
return 0

55

‘L Information sur le plugin

carribaultp$ gcc -fplugin=./plugin.so -c test.c
Plugin initialization:
base name = plugin
full name = ./plugin.so
argc = ©
version = (null)
help = (null)
carribaultp$ gcc -fplugin=./plugin.so -fplugin-arg-plugn-mon argl=tote -c test.c
ccl: error: plugin plugn should be specified before -fplugin-arg-plugn-mon argl=toto in the command line
Plugin initialization:
base name = plugin
full name = ./plugin.so
argc = 6
version = (null)
help = (null)
carribaultp$ gcc -fplugin=./plugin.so -fplugin-arg-plugin-mon argl=toto -c test.c
Plugin initialization:
base name = plugin
full name = ./plugin.so
argc = 1
Arg @: mon argl = toto
version = (null)
help = (null)
carribaultp$ gcc -fplugin=./plugin.so -fplugin-arg-plugin-mon argl=toto -fplugin-arg-plugin-val=2 -c test.c
Plugin initialization:
base name = plugin
full name = ./plugin.so
argc = 2
Arg @: mon argl = toto
Arg 1: val = 2
version = (null)
help = (null)

‘L Plan du cours

= Modification du compilateur

= Evénement

57

i Evénement d’un plugin

= Pour le moment, le plugin s'initialise
= Dans cette fonction, il faut donner des infos au compilateur
sur le comportement de notre plugin
= Programmation évenementielle avec des callbacks
= Enregistrement d’évenements a capturer par le plugin
= Appel d'une fonction pour |'enregistrement avec un type
d’évenement
= Ajout d’'un pointeur de fonction pour désigner la fonction

que le compilateur doit appeler lorsque I'évenement se
produit

= Liste des évenements dans le fichier plugin.def

58

Liste exhaustive

PLUGIN_PASS_MANAGER_SETUP,
PLUGIN_FINISH_TYPE,
PLUGIN_FINISH_DECL,
PLUGIN_FINISH_UNIT,
PLUGIN_PRE_GENERICIZE,
PLUGIN_FINISH,

PLUGIN_INFO,
PLUGIN_GGC_START,
PLUGIN_GGC_MARKING,
PLUGIN_GGC_END,
PLUGIN_REGISTER_GGC_ROOTS,
PLUGIN_REGISTER_GGC_CACHES,
PLUGIN_ATTRIBUTES,
PLUGIN_START_UNIT,
PLUGIN_PRAGMAS,
PLUGIN_ALL_PASSES_START,
PLUGIN_ALL_PASSES_END,
PLUGIN_ALL_IPA_PASSES_START,
PLUGIN_ALL_IPA_PASSES_END,
PLUGIN_OVERRIDE_GATE,
PLUGIN_PASS_EXECUTION,
PLUGIN_EARLY_GIMPLE_PASSES_START,
PLUGIN_EARLY_GIMPLE_PASSES_END,
PLUGIN_NEW_PASS,
PLUGIN_EVENT_FIRST_DYNAMIC

59

i Evénements intéressants

= PLUGIN_PASS_MANAGER_SETUP

=« Permet d’interagir avec le pass manager pour ajouter une
nouvelle passe

= PLUGIN_START_UNIT

= Utile pour initialiser des données (e.g., ouverture de fichiers)
au début de la compilation d’un fichier

= PLUGIN_FINISH ou PLUGIN_FINISH_UNIT

= Utile pour finaliser des données (e.g., fermeture de fichiers)
a la fin de la compilation d’un fichier

= PLUGIN_PRAGMAS

= Ajout de la reconnaissance d'une directive (#pragma en
C/C++)

60

Enregistrement

= Fonction pour enregister un événement :
void register_callback (const char *plugin_name,
int event,
plugin_callback_func callback,
void *user_data);

= Arguments

= plugin_name : nom du plugin sans le chemin ni |'extension
« Utilisation de plugin_info->base_name pour le plugin courant

= event :évenement a enregistrer
= callback : fonction appelée lorsque cet éveénement apparait
= user_data : données utilisateurs utiles pour le callback

= Selon les événements,
= callback peut étre NULL
= user_data peut étre NULL

= Prototype de la fonction de call back
void (*plugin_callback_func) (void *gcc_data, void *user_data);

61

Exemple de callback

#include <gcc-plugin.h=
int plugin is GPL compatible ;

void callback start unit (void *gcc data, void *user data) {
printf{ "Callback start unitin") ;
}

void callback finish unit (void *gcc data, void *user data) {
printf(“"Callback finish unitin") ;
}

void callback finish (void *gcc data, void *user data) {
printf("Callback finishgn") ;
}

int plugin init (struct plugin name args *plugin info,
struct plugin gcc version *version) {

register callback (plugin info-=base name,
PLUGIN START UNIT,
callback start unit,
NULL };

register callback (plugin info-=base name,
PLUGIN FINISH UNIT,
callback finish unit,
MULL };

register callback (plugin info-=base name,
PLUGIN FINISH,
callback finish,
NULL };

‘L Exemple de callback

carribaultp$ gcc -fplugin=./plugin.so -c test.c
Callback start unit

Callback fimish unit

Callback finish

carribaultp$ gcc -fplugin=./plugin.so -c test.c test2.c
Callback start unit

Callback fimish unit

Callback finish

Callback start unit

Callback fimish unit

Callback finish

63

‘L Plan du cours

= Modification du compilateur

Pass manager

i Création d’une nouvelle passe

= Etapes pour ajouter une nouvelle
passe

1. Définition d'une nouvelle passe
». Insertion dans le pass manager

3. Enregistrement de I'évenement associé
pour le plugin

65

i 1 - Définition d’'une passe

= Structure d’'une passe
= Définie dans tree-pass.h
= Localisée dans répertoire include des plugins

= Nom : struct opt_pass

= Champs intéressants :

= Type de passes (voir ci-apres)
enum opt_pass_type type

= Nom de la passe
const char *name ;

= Fonction pour la décision d'exécution
bool (*gate) (void) ;

= Fonction d’exécution de la passe
unsigned int (*execute) (void) ;

66

i 1 - Définition d’'une passe

= Type de passe (différences ?)
enum opt_pass_type {
GIMPLE_PASS,
RTL_PASS,
SIMPLE_IPA_PASS,
IPA_PASS

3

= Fonction pour la décision d’exécution
= Retourne un booléen
= Permet d’activer la passe seulement dans un contexte particulier (niveau
d’optimisation, option, ...)
= Fonction d’exécution de la passe
= Corps de la passe proprement dite
= Cette fonction n’est appelée que si la gate a répondue VRAI

67

i 2 — Insertion de la passe

= Interaction avec le pass manager
= Une fois notre passe définie, besoin de l'insérer dans le processus de compilation
= Besoin également de donner plusieurs infos (e.g., la fréquence de décisions)

= Structure permettant de renseigner les informations sur la passe et son insertion

struct register_pass_info {
struct opt_pass *pass; /* New pass provided by the plugin. */
const char *reference_pass_name; /* Name of the reference pass
for hooking up the new pass. */
int ref_pass_instance_number; /* Insert the pass at the specified
instance number of the reference pass. */
/* Do it for every instance if it is 0. */
enum pass_positioning_ops pos_op; /* how to insert the new pass. */
I3
= Positionnement de la passe
enum pass_positioning_ops {
PASS POS_INSERT_AFTER, // Insert after the reference pass.
PASS POS_INSERT_BEFORE, // Insert before the reference pass.
PASS POS_REPLACE // Replace the reference pass.

68

i 3 - Enregistrement

= Utilisation de I'évenement
PLUGIN PASS MANAGER_ SETUP

= Appel a la fonction d’enregistrement
register_callback

= Fonction de callback > NULL

= Fonctions nécessaires pour décider et exécuter la passe sont
contenues dans l'instance de la structure opt_pass

= Pointeur user data - pointeur sur une structure pour

renseigner les informations sur la passe (adresse sur
instance de register_pass_info)

69

* Exemple

bool gate my pass (void) {
return true ;
}
_ _ _ int plugin init (struct plugin name args *plugin info,
unsigned int execute my pass (void) { - struct plugin gcc version *version) [
printf{ "Executing my pass with function %s\n", =

SCE name. fchbrene Hnesion Set)i): struct register pass info pass info;

return @ 3

} pass _info.pass = &my pass ;

struct opt pass my pass = { pass _info.reference pass name = "omplower" ;
GIMPLE PASS, /* type */ pass_info.ref pass instance number = @ ;
"my pass", /* name */ pass info.pos op= PASS POS INSERT BEFORE ;
gate my pass, /* gate */
execute my pass, /*execute */ register callback (plugin info-=base name,
NULL, /* sub */ PLUGIN PASS MANAGER SETUP,
MULL, /* next *{ MULL,
8, /* static pass number */ &pass info);
TV_NONE, /* tv id */ -
PRGP_gimple_any, I pfnpertiea_required 7 =turn @ 3
@, /* properties provided */ I
8, /* properties destroyed */
@, /* todo flags start */
@ /* todo Tlags finish */

Fi

70

‘L Exemple

carribaultp$ cat test.c
#include <stdio.h>

void () {
printf{ *In f{)\n"™) ;
}

int main() {

printf("Hello\n") ;
)3

return @ ;

}

carribaultp$ gcc -fplugin=./plugin.so
Executing my pass with function main
Executing my pass with function f

test.c

/1

i Pass Manager

Nécessité de connaitre l'ordre des passes exécutees
par GCC !

= Besoin de regarder le code du pass manager
= Dans les sources du compilateur
= Pas disponible dans les Aeaders relatifs aux plugins

= Pass manager
= Sous-répertoire gcc
= Fichier passes.c
= Fonction init_optimization_passes

= Plusieurs types de passes
« Lowering, IPA, All passes, ...

72

Pass Manager

void
init optimization passes (void)
{

struct opt pass **p;
#define NEXT PASS(PASS) (p = next pass 1 (p, &((PASS).pass)))

/* ALl passes needed to lower the function into shape optimizers can
operate on. These passes are always run first on the function, but
backend might produce already lowered functions that are not processed
by these passes. */

p = &all lowering passes;

NEXT PASS (pass warn unused result);
NEXT PASS (pass diagnose omp blocks);
MEXT PASS (pass diagnose tm blocks);
NEXT PASS (pass mudflap 1);
NEXT PASS (pass lower omp);
NEXT PASS (pass lower cf);
NEXT PASS (pass lower tm);
NEXT PASS (pass refactor eh);

NEXT PASS (pass lower eh);

NEXT PASS (pass build cfg);

NEXT PASS (pass warn function return);
NEXT PASS (pass build cgraph edges);
*p = NULL;

/* Interprocedural optimization passes. */

p = &all small ipa passes;

NEXT PASS (pass ipa free lang data);

NEXT PASS (pass ipa function and variable visibility); 73
NEXT PASS (pass early local passes);

i Nom des passes

= Une fois la position trouvee, il
manque une information

struct gimple opt pass pass lower omp =
= Le nom de la passe de e
refe rence GIMPLE PASS,
"Emplower", /* name */
MULL, /* gaite */
= Comment trouver ce nom ? execute lower omp, /* execute */
. . T NULL, f* sub */
= Pas de solution immediate NULL. ia nat o
S|mp|e e, /* static_pass_number */
. Be_soin de regarder la structure gﬁgngfﬁiple any ;{’ ;ﬁ:ﬂ;gr"cies required */
q.LII definit cette passe . PRDP:gimple:lnm['J, /* properties provided */
= Si vous trouvez une meilleure 9, [LTt d?t{w?d */
:) * todo flags start *
SO|UtIOn... B8 /* todo flags fTinish */
}

= Exemple : fichier omp-low.c

74

‘L Plan du cours

= Manipulation du code
= Structures GIMPLE
= Structures CFG

75

Manipulation du code

= Focalisation sur les passes en GIMPLE
= Code source du fichier a compiler représenté en GIMPLE
= GIMPLE est notre représentation intermédiaire

= Gestion du code en GIMPLE

= Deux etapes : avant et apres la creation du graphe de flot de
controle (CFG)

= Avant la création du CFG :

= Tout peut étre fait grace a un traitement itératif en GIMPLE
(recursif)
= Documentation : gimple.def gimple.h gimple.c

= Apres la création du CFG :
= Acces au code a travers le graphe de flot de controle

76

Fichier source en GIMPLE

#include <stdio.h>

int f{ int-a;, int-*m) o
intE3
intb=a:

B
S

(a)i

b += m[i]

@ ;i<a; i+) {

[f] (int a, int * m)
gimple bind <

unsigned int i.®;
unsigned int D.1823;
int # D.1824;

int D.1825;

int D.1826;

int i;

int b;

gimple assign <parm decl, b, a, NULL=

gimple cond <ne expr, a, ©, <D.1819>, <D.1828>>
gimple label <<D.1819=>

gimple assign <plus expr, b, b, 1>

gimple goto <<D.1821>>

gimple label <<D.1820>>

gimple assign <integer cst, i, @, NULL>

gimple goto <<D.1816>>

gimple label <<D.1815>>

gimple assign <nop expr, 1.6, i, NULL>

gimple assign <mult expr, D.1823, 1.8, 4>
gimple assign <pointer plus expr, D.1824, m, D.1823>
gimple assign <mem ref, D.1825, *D.1824, NULL=>
gimple assign <plus expr, b, D.1825, b=

gimple assign <plus expr, i, i, 1>

gimple label <<D.1816>>

gimple cond <lt expr, i, a, <D.1815=, <D.1817>>
gimple label <<D.1817>>

gimple label <<D.1821>>

gimple assign <var decl, D.1826, b, NULL>
gimple return <D.1826=

77

‘L Fichier source avec le CFG

+: Function f (f, funcdef no=8, decl uid=1811, cgraph uid=e)

<bb 5=:
f (int a, int * m) gimple assign <nop expr, 1.0, 1, NULL=
i gimple assign <mult expr, D.1823, 1.0, 4=
int b; gimple assign <pointer plus expr, D.1824, m, D.1823>
izi 5 1826 gimple assign <mem ref, D.1825, *D.1824, NULL>
int D.1825: gimple_assign <plus_expr, b, D.1825, b>
int * D.1824: gimple assign <plus expr, i, i, 1=
unsigned int D.1823;
unsigned int 1.0; <hb 6=:
ISR gimple cond <lt expr, 1, a, NULL, NULL=>
gimple assign <parm decl, b, a, NULL= goto <bb 5>;
gimple cond <ne expr, a, ©, NULL, NULL> else
gnto_{hb 3>; B gﬂtﬂ <bb ?};
else
goto <bb 4>; <bb 7>:
gimple assign <var decl, D.1826, b, NULL>
<bb 3=>: - -
girple_assign splus_expr, b, b, 1> ginple label <<L6>>
' gimple return <D.1826>
<bb 4=:
gimple assign <integer cst, 1, ©, NULL=> }
aoto <bb 6=;

78

Exemple de passe GIMPLE

= Premiere passe de /lowering :
warn_unused_result

= Affiche un warning lorsque le retour d’'un
appel de fonction n’est pas capturé et que

cette fonction a un attribut static unsigned int
warn unused result run_warn unused result (void)
- B i
do warn unused result (gimple body (current function decl));
= Fonction i o
= do_warn_unused_result
(gimple_body . static bool
(current_function_decl)); gate warn unused result (void)
{
. flag warn unused result;
= current_function_decl }
= Pointeur vers la racine de la déclaration de ,
la fonction courante struct gimple opt pass pass warn unused result =
. — {
= Tout le corps de la fonction (ainsi que les [
arguments, le retour et les variables GIMPLE PASS,
locales) est accessible a partir de ce "swarn unused result”, /* name */
pointeur gate warn unused result, [* gate %f
run warn unused result, /% execute =/
NULL, [* sub */

= Accés a la représentation gimple de la
fonction
= gimple_seq gimple_body(tree t)

79

Exemple de passe GIMPLE

static void
do warn unused result (gimple seq seq)

{

tree fdecl, Ttiype;
gimple stmt iterator 1;

for (i = gsi start (seq); !gsi end p (i); gsi next (&i))
{
gimple g = gsi stmt (i};

switch (gimple code (g))

{

case GIMPLE BIND:
do warn unused result (gimple bind body (g));
break;

case GIMPLE TRY:
do warn unused result (gimple try eval (g));
do warn unused result (gimple try cleanup (g));
break:

case GIMPLE CATCH:
do warn unused result (gimple catch handler (g)});
break:

case GIMPLE EH FILTER:
do warn_unused result (gimple eh filter failure (g));
break:

case GIMPLE CALL:
it (gimple call lhs (g))
break;
if {gimple call internal p (g))
break; B - 80

i Construction du CFG

= Une fois le graphe de flot de controle (CFG) construit
= Passage par la structure du CFG pour la manipulation du code
= Ensemble de nceuds et d‘arcs

= Passe qui construit le CFG
= Nom dans le pass manager : pass_build_cfg
= Nom de la passe : cfg

= Structures utilisées pour le CFG
= struct control_flow_graph

= CFG de la fonction courante :
cfun->cfg

81

Structure principale du CFG

struct GTY{{}} cnntrul;flnw_grapﬁ {

/* Block pointers for the exit and entry of a function.

These are always the head and tail of the basic block list. */
basic block x entry block ptr;
basic block x exit block ptr;

/* Index by basic block number, get basic block struct info. */
VEC(basic block,gc) *x basic block info;

/* Number of basic blocks in this flow graph. #/
int x n basic blocks;

/* Number of edges in this flow graph. */
int x n edges;

/* The first free basic block number. #*/
int % last basic block;

/* UIDs for LABEL DECLs. */
int last label uid;

/* Mapping of labels to their associated blocks. At present
only used for the gimple CFG. */
VEC(basic block,gc) *x label to block map;

enum profile status d x profile status;

/* Whether the dominators and the postdominators are available. */
enum dom state x dom computed[2];

/* Number of basic blocks in the dominance tree. */
unsigned X n bbs in dom tree[2];

/* Maximal number of entities in the single jumptable. Used to estimate
final flowgraph size. */
int max jumptable ents;

;|

82

Noeuds du CFG

Basic block
typedef struct basic_block _def *basic_block;

Fichiers concernées :
= coretypes.h , basic-block.h

Champs
= Vecteurs d'arc (edge) entrant et sortant : preds , succs
= Double liste chainée : prev_bb , next_bb
« Indice dans le vecteur des BBs : index
= Ensemble de flags...

Notion de vecteurs : cf. vec.h pour plus d’infos...

Deux BB spéciaux (source et puits)
= ENTRY_BLOCK_PTR
= EXIT_BLOCK_PTR

83

Arcs du CFG

= Edge
typedef struct edge_def *edge;

= Fichiers concernées :

coretypes.h , basic-block.h

= Champs

Source de |'arc : src

Destination de I'arc : dest

Indice dans le vecteur de destination : dest_idx
Ensemble de flags...

84

Parcours du CFG

Parcours du corps de la fonction a travers le CFG
= Possibilité d'itérer sur les nosuds
= Ensuite, sur les arcs

Plusieurs solutions pour le parcours des noceuds

= Tous les bloc de base sauf source et puits (peu importe leur ordre)
basic_block bb;
FOR_EACH_BB (bb) { /* ... */}

= Tous les bloc de base (peu importe leur ordre)
basic_block bb;
FOR_ALL BB (bb) {/* ... */}

= Commencer au premier BB
basick_block bb = ENTRY_BLOCK_PTR ;

85

Parcours du CFG

= Exemple simple du parcours du CFG
= Itération sur tous les BBs (sauf source et puits)
= Ordre non défini

gimple_stmt_iterator gsi;
gimple stmt;

FOR_EACH_BB (b)

{ for (gsi = gsi_start_bb (b); 'gsi_end_p (gsi); gsi_
(&gsi))
{ stmt = gsi_stmt (gsi);
[* .. *
}
}

next

86

Exemple

unsigned int execute my pass (void) {
basic block bb ;
gimple stmt iterator gsi;
gimple stmt;

printf{ "Function %s w/ %d BB(s)\n",
get name (current function decl),
n basic blocks) ;

FOR EACH EB (bb)
{
printf("BB #%d\n", bb-=»index) ;
‘or (gsl = gsi start bb (bb); !'gsi end p (gsi); gsi next (&gsi)) {
printf{ "\tStatement\n") ;
stmt = gsi stmt (gsi);
debug gimple stmt{ stmt } ;

87

‘L Exemple

carribaultp$ cat test.c
#include <stdio.h=>

int f(int a) {

intb=a;
3 il Ol B)

}

printf("A is not B\n") ;
::

}

b=a+1:;

return b ;

carribaultp$ gcc -fplugin=./plugin.so -c test.c

Function f w/ 6 BB(s)

BB #2
Statement
b= a;
Statement
if (a = 8)
BB #3
Statement

__builtin puts (&"A 1s not €"[@]);

Statement
b=a+ 1;
BE #4

Statement
D.1816 = b;
BB #5

Statement
=L2=:

Statement

return D.1816;

88

Conclusion

= Modification du compilateur possible grace a un
plugin
= Avantage : en dehors des sources du cceur du compilateur
= Inconveénient : modifications limitées

= Documentation
= Manuel /nternals et transparents disponibles
= Documentation la plus efficace : code source

= Représentation intermédiaire

= Attention au type de représentation utilisee (Arbre GIMPLE,
CFG, les deux, ...)

= Certaines données ne sont construites que plus tard (par
exemple boucles)

89

