
1

Compilation : le Middle End

Patrick Carribault
patrick.carribault@cea.fr

Organisation du cours

� Responsable de cours
� Patrick Carribault (patrick.carribault@cea.fr)

� Intervenants
� Julien Jaeger (julien.jaeger@cea.fr)
� Antoine Capra (antoine.capra@atos.net)

� Evaluation
� Projet en binôme

2

Projet
� Thème

� Validation statique/dynamique de programmes MPI

� Evaluation en binôme
� Rapport (dizaine de pages)
� Soutenance (10 présentation + 10 minutes démonstration + 10 minutes questions)

� Dates clefs
� Liste des binômes : 18/09 (aujourd’hui !)
� Rendu du rapport + code source : 23/10
� Soutenance : 23/10

� Conseils
� Les TPs suivent globalement le projet � projet à travailler au fur et à mesure du

déroulement du module !
� Bien faire les parties obligatoires du projet
� Vérifier et valider le code source avec plusieurs exemples

3

4

Plan du cours

� Présentation de GCC
� Introduction

� Structure générale

� Installation

� Modification du compilateur
� Plugin

� Evénement

� Pass manager

� Manipulation du code
� Structures GIMPLE

� Structures CFG

Plan du cours

� Présentation de GCC
� Introduction

� Structuré générale

� Installation

� Modification du compilateur
� Plugin

� Evénement

� Pass manager

� Manipulation du code
� Structures GIMPLE

� Structures CFG

5

6

Chaîne de compilation GNU

� GCC : GNU Compiler Collection
� Historiquement GNU C Compiler

� Ensemble d’outils et de bibliothèque
pour la compilation
� Plusieurs langages, plusieures architectures

� Générateur de compilateurs !

� Disponible sous licence GPL
� http://gcc.gnu.org

� Support principal des TDs/TPs !

7

Survol des fonctionnalités

� Langages supportés
� C, C++
� Objective-C, Objective-C++
� JAVA,
� Fortran
� ADA

� Processeurs supportés
� ARM, IA-32 (x86), x86-64, IA-64, MIPS, SPARC, …

� Système de plugins pour ajouter/modifier des passes
de compilation

Plan du cours

� Présentation de GCC
� Introduction

� Structuré générale

� Installation

� Modification du compilateur
� Plugin

� Evénement

� Pass manager

� Manipulation du code
� Structures GIMPLE

� Structures CFG

8

9

Architecture de GCC

Programme
source

Programme
cible

Compiler
cc1

Preprocessor
cpp

Linker
ld

Assembler
gas

Driver
gcc

Package GCC Package binutils

10

Architecture de GCC

Front-End Gimplifier

Middle-End

RTL
Generator

Back-End

Source
code

Assembly
code

GENERIC GIMPLE

GIMPLE

RTLASM

C/C++/…

Code
Generator

RTL

Selected at
build time

Generated at
build time

© Uday Khedker, Indian Institute of Technology, Bombay

11

Transformations dans GCC

� GCC possède un total de 203 passes de
transformations

� Le nombre total de passes effectuées lors
d’une compilation est 239
� Certaines transformations sont appelées plusieurs

fois

� Pour l’enchainement des transformations sur
les représentations intermédiaires, GCC utilise
un pass manager
� Situé dans les fichiers ${SOURCE}/gcc/passes.c et

${SOURCE}/gcc/passes.def

12

Historique de GCC
� 0.9 : 22 Mars 1987

� Première version beta

� GCC 1.0 : 23 Mai 1987
� GCC 3.0 : 18 Juin 2001

� Ajout du support du langage JAVA

� GCC 4.0 : 20 Avril 2005
� Ajout de la branche tree-ssa
� Ajout de l’algorithme de pipeline logiciel Swing Modulo Scheduling (SMS)
� Représentation intermédiaire GIMPLE

� GCC 4.2.0 : 13 Mai 2007
� Support de OpenMP pour C, C++ et Fortran

� GCC 4.5.0 : 14 Avril 2010
� Optimisations au link (LTO)

� GCC 4.6.0 : 25 Mars 2011
� Réduction de l’empreinte mémoire / meilleure exploitation du cache
� Ajout de nouveau langages : CAF et GO

� GCC 4.7.0 : 22 Mars 2012
� OpenMP 3.1
� Standard C++11

� GCC 4.8.0 : 22 Mars 2013
� Programmation en partie en C++ 2003
� Support intégral du standard C++11

13

Historique de GCC
� GCC 4.9.0 : 22 Avril 2014

� OpenMP 4.0
� Amélioration des diagnostiques (incluant de la couleur)
� Support expérimental pour C++14
� Go 1.2.1
� Support AVX-512

� GCC 5.1 : 22 Avril 2015
� Amélioration du support C++ 14
� OpenMP 4.0 offloading
� Implémentation préliminaire pour OpenACC 2.0
� Support spécifiques pour les architectures Intel Xeon Phi
� Go 1.4.2

� GCC 5.2 : 16 Juillet 2015
� Support du mot clé « vector »
� Support amélioré pour les instructions AMD
� Support du processeur IBM z13

� GCC 5.3 : 4 Décembre 2015
� Support du processeur Intel Skylake avec AVX-512
� Support des processeurs IBM z pour le langage GO

� GCC 6.1 : 27 Avril 2016
� OpenMP 4.5
� Amélioriation du support de OpenACC 2.0
� Support expérimental pour C++ 17

� GCC 6.2 : 22 Août 2016
� Support SPARC

14

Historique de GCC

� GCC 7.1 : 2 Mail 2017
� GCC 7.2 : 14 Août 2017
� GCC 7.3 : 25 Janvier 2018

� Amélioration des avertissements
� Proposition de noms dans le cas d’une typo (changement au niveau des front-ens)
� Support expérimental du c++17
� Ajout de la génération de code pour plusieurs processeurs ARM (e.g., Cavium

ThunderX)
� Possibilité d’utiliser les GPU Nvidia avec OpenMP 4
� Ajout du jeu d’instruction RISC V

� GCC 8.1 : 2 Mai 2018
� GCC 8.2 : 14 Juillet 2018

� Support expérimental du C++2a
� Amélioration du C++17
� Support du jeu d’instruction vectoriel ARM SVE

Support des TDs

15

Evolution de la taille de GCC

Count GCC 4.3.0 GCC 4.4.2 GCC 4.5.0

Lines

Main source 2,029,115 2,187,216 2,320,963

Libraries 1,546,826 1,633,558 1,671,501

Subdirectories 3,527 3,794 4,055

Files

Number of files 57,660 62,301 77,782

C source files 15,477 18,225 20,024

Header files 9,646 9,213 9,389

C++ files 3,708 4,232 4,801

Machine
description

186 206 229

(Line counts estimated by David A. Wheeler’s sloccount program)

16

Taille de GCC 4.6.2

17

Transformations GIMPLE

Pass Group Number of passes

Lowering 12

Interprocedural optimizations 49

Intraprocedural optimizations 42

Loop optimizations 27

Remaining intraprocedural
optimizations

23

Generating RTL 01

Total 154

18

Transformations RTL

Pass Group Number of passes

Intraprocedural Optimizations 21

Loop optimizations 7

Machine Dependent
Optimizations

54

Assembly Emission and Finishing 03

Total 85

19

Préprocesseur

� CPP : Gestion des directives de précompilation

� Syntaxe des directives
� #keyword

� Exemple de directives
� #ifdef

� #include

� #warning

� #error

� Explosion de la taille du code après preprocessing
� Attention #pragma n’est pas traité par le

préprocesseur

20

Front-end

� Lecture du fichier source en entrée
� C, C++, Fortran, Java, C#, …

� Vérification de la validité du code
� Analyse lexicale
� Analyse syntaxique
� Analyse sémantique
� Cf. CPA cours 1

� Chaque front-end est dans un répertoire différent :
� C, ObjectiveC � ${SOURCE}/gcc/c/, ${SOURCE}/gcc/c-family/
� C++ � ${SOURCE}/gcc/cp/, ${SOURCE}/gcc/c-family/
� Fortran � ${SOURCE}/gcc/fortran/

� En sortie, le code est représenté en GENERIC
� Sauf pour C/C++ qui génère directement du GIMPLE

21

GENERIC

� Représentation intermédiaire sous forme d’arbre

� Indépendant du langage source

� Processus de création d’une représentation GENERIC
� Génération de l’arbre de syntaxe abstraite par le parser
� Le parser peut garder cette représentation

� Suppression des constructions spécifiques au langage

� Emission de l’arbre GENERIC à la fin de la phase de parsing

� Tous les noeuds sont définis dans
$(SOURCE)/gcc/tree.def
� Notion de tree codes

22

Middle-end

� Optimisation haut niveau
� Indépendante de l’architecture

� Granularités
� Optimisation par fonction
� Optimisation par boucle
� Optimisation inter-procédurale

� Ordre des transformations géré par le pass manager
de GCC

� Travail sur une représentation intermédiaire nommée
GIMPLE
� En conjonction avec d’autre RIs (par exemple CFG)
� Détails dans le prochain cours

23

GIMPLE

� Représentation intermédiaire de haut niveau
� Introduite dans GCC 4.4
� Basée sur une représentation avec un arbre
� Nœud avec une sémantique

� Sous-ensemble simplifié de GENERIC
� Représentation 3-adresses
� Aplatissement du flot de contrôle
� Simplifications et nettoyage (la grammaire est restreinte)
� Transformation de GENERIC vers GIMPLE

� gimplify_function_tree() dans le fichier gimplify.c

� Deux niveaux de GIMPLE
� High GIMPLE
� Low GIMPLE

24

GIMPLE – Exemple en C

� Exemple simple
� Langage C

� Une seule fonction main

� Compilation avec sortie des
fichiers intermédiaires :
� gcc –fdump-tree-all

test.c

� Génération de la représentation
GIMPLE entre les
transformations

int main() {

int x = 10 ;

if (x) {

int y = 5 ;

x = x*y+15 ;

}

}

25

GIMPLE – Exemple en C
Fichier test.c:

int main() {
int x = 10 ;
if (x) {

int y = 5 ;
x = x*y+15 ;

}
}

� Déclaration de temporaires
� D.2720

� Simplification pour le code 3
adresses

� D.2720 = x*y

� Flot de contrôle avec goto

Fichier test.c.004t.gimple:

main() {
int D.2720;
int x;
x = 10 ;
if (x!=0) goto <D.2718>;
else goto <D.2719>;
<D.2718>:
{

int y;
y=5;
D.2720 = x*y;
x = D.2720+15

}
<D.2719>:

}

26

GIMPLE – Exemple en C

� Génération du code GIMPLE
� gcc –fdump-tree-all-raw test.c

Fichier test.c.004t.gimple:

main() {
int D.2720;
int x;
x = 10 ;
if (x!=0) goto <D.2718>;
else goto <D.2719>;
<D.2718>:
{

int y;
y=5;
D.2720 = x*y;
x = D.2720+15

}
<D.2719>:

}

Fichier test.c.004t.gimple:

main()
gimple_bind <

int D.2720;
int x;
gimple_assign<integer_cst,x,10,NULL
>
gimple_cond <ne_expr, x, 0,
<D.2718>, <D.2719> >
gimple_label <<D.2718>>
gimple_bind <

int y;
gimple_assign<integer_cst, y,

5, NULL>
gimple_assign<mult_expr,

D.2720, x, y>
gimple_assign<plus_expr,x,

D.2720,15>
>
gimple_label<<D.2719>>

>

27

GIMPLE – Exemple en C
Fichier test.c.004t.gimple:

main() {
int D.2720;
int x;
x = 10 ;
if (x!=0) goto <D.2718>;
else goto <D.2719>;
<D.2718>:
{

int y;
y=5;
D.2720 = x*y;
x = D.2720+15

}
<D.2719>:

}

Fichier test.c.011t.cfg

main() {
int y;
int x;
int D.2720;

<bb2>:
x=10;
if (x!=0) goto <bb 3>;
else goto <bb 4>;

<bb 3>:
y=5;
D.2720 = x*y;
x=D.2720+15;

<bb 4>:
return ;

}

28

GIMPLE - tree code
� Tous les tree code de GCC

(152) sont listés dans
$(SOURCE)/gcc/tree.de
f

� Binary Operator
� MAX EXPR

� Comparison
� EQ EXPR, LT EXPR

� Constants
� INTEGER CST, STRING CST

� Declaration
� FUNCTION DECL, LABEL

DECL , VAR DECL

� Expression
� PLUS EXPR, ADDR EXPR

� Reference
� COMPONENT REF, ARRAY

RANGE REF

� Statement
� GIMPLE MODIFY STMT,

RETURN EXPR, COND EXPR,
INIT EXPR

� Type
� BOOLEAN TYPE, INTEGER

TYPE

� Unary
� ABS EXPR, NEGATE EXPR

29

GIMPLE - Transformations

� Un compilateur comporte un grand ensemble de
transformations de haut niveau
� Notion de middle-end

� On peut citer quelques exemples :
� Déroulage de boucle
� Vectorisation
� Factorisation de code
� …

� Les compilateurs introduisent des options pour définir
des ensembles de transformations
� -02, -03, …

� Dans quel ordre utiliser ces transformations ?

30

Pass Manager

� GCC utilise un pass manager pour enchainer
les différentes transformations

� Dépendant du niveau d’optimisation
� Ainsi que des options de compilation

� Depuis GCC 4.5
� Souplesse du pass manager

� Possibilité de créer des plugins pour ajouter une
transformation

� Détails dans le prochain cours

31

Pass Manager

� Construction d’un arbre de transformations
dans la fonction
init_optimization_passes() dans le
fichier passes.c

� Exemple : lowering passes
NEXT_PASS(pass_warn_unused_results)

NEXT_PASS(pass_diagnose_omp_blocks)

NEXT_PASS(pass_mudflap_1);

NEXT_PASS(pass_lower_omp);

NEXT_PASS(pass_lower_cf);

32

Back-end

� Rôles principaux
� Optimisations dépendantes de l’architecture

� Génération finale du code assembleur

� Travaille sur une représentation intermédiaire
nommée RTL
� Register Transfer Language

� Utilise une représentation de la machine
� Notion de machine description

33

RTL

� Briques de base : object RTL
� Expressions
� Integers
� Wide integers
� Strings
� Vectors

� Chaque expression a un code
� La liste des codes est défini dans le fichier

rtl.def
� Macro pour connaître le code d’une expression :

GET_CODE(x)

34

RTL

� Exemple d’affectation
� DEF_RTL_EXPR(SET, “set”, “ee”,

RTX_EXTRA)

� Deux opérandes
1. Destination (registre, mémoire, …)
2. Valeur

� Macro
1. Nom interne (majuscules par convention)
2. Nom ASCII (minuscules par convention)
3. Format d’affichage (documenté dans rtl.c)

1. ‘e’ définit un pointer vers une expression

35

RTL

� Exemple : expression b = a + 3 ;
� a est contenu dans le register reg:SI 60

(insn 7 6 8 test.c:2 (set
(reg:SI 59)

(plus:SI (reg:SI 60)

(const_int 3 [0x3])))

-1 (nil))

Instruction
précédente/
courante/
suivante

RTL code

Type de
destination

Sous-expression
(addition)

Plan du cours

� Présentation de GCC
� Introduction

� Structuré générale

� Installation

� Modification du compilateur
� Plugin

� Evénement

� Pass manager

� Manipulation du code
� Structures GIMPLE

� Structures CFG

36

37

Installation de GCC

� Site web (documentation, téléchargement, …)
� GCC : http ://gcc.gnu.org/
� Version 8.2 actuellement

� Dépendances (bibliothèques)
� GMP
� MPFR
� MPC

� Configuration
� Création d’un sous-répertoire travail

./configure --prefix=chemin-vers-travail --enable-l anguages=c,c++ --
enable-plugin

� Compilation
� make && make install

38

Installation de GCC

� Après l’étape make install
� GCC est installé dans le répertoire donné avec l’option –

prefix lors de la configuration

� Utilisation
� Modification du PATH
export PATH=chemin-vers-travail/bin:$PATH

� gcc -v devrait vous donner la version 8.1 et la ligne de
configuration que vous avez mis

� Modification du compilateur
� On modifie ce qu’on veut et ensuite

make && make install

39

Documentation de GCC

� Documentation principale
� Le code de GCC

� Important : il faut pouvoir lire le code de GCC pour comprendre
comment cela fonctionne
� Ne pas hésiter à parcourir les fichiers sources du cœur du

compilateur

� Souvent la solution existe dans une autre partie de GCC

� Autre documentation de référence
� The GCC internals
� http ://gcc.gnu.org/onlinedocs/gccint/Plugins.html#Plugins

� Exemple du PDF…

Plan du cours

� Présentation de GCC

� Introduction

� Structuré générale

� Installation

� Modification du compilateur

� Plugin

� Evénement

� Pass manager

� Manipulation du code
� Structures GIMPLE

� Structures CFG

40

41

Modification du compilateur

� Catégories de modifications
� Corrections de bugs
� Ajout de fonctionnalités

� Ajout de fonctionnalités
� Nouveau langage en entrée
� Nouvelle architecture cible
� Nouvelle passe (analyse/transformation/optimisation)

� Comment faire des modifications dans le compilateur GCC ?
� Nouveau Front-end
� Nouvelle description d’architecture (machine description)
� Nouvelle passe

� Comment ajouter une nouvelle passe ?
� Ajout direct dans le cœur du compilateur
� Programmation d’un plugin externe

42

Description d’un plugin
� Plugin

� Bout de code chargé par le compilateur au moment de la compilation d’un fichier
� Sous forme de bibliothèque dynamique
� Interaction avec le cœur du compilateur

� Contenu minimal d’un plugin
� Initialisation : fonction prédéfinie qui retourne 0 si tout se passe bien
� Licence GPL : déclaration d’une variable globale prédéfinie

int plugin_is_GPL_compatible ;

� Etapes
1. Compilation du plugin en une bibliothèque dynamique
2. Exécution

� Lors de la compilation d’un fichier : renseigné l’utilisation d’un plugin
� Possibilité de mettre des arguments

43

Initialisation d’un plugin

� Fonction d’initialisation du plugin
� int plugin_init (

struct plugin_name_args *plugin_info,
struct plugin_gcc_version *version

) ;

� Chaque plugin doit implémenter cette fonction
� Point d’entrée

� Fonction main dans le cœur du compilateur
� Lors de la phase d’initialisation des plugins, le compilateur

appelle la fonction plugin_init de tous les plugins (de
façon séquentielle)

� Où est définit ce prototype ?
� Dans le header gcc-plugin.h

44

Plugin minimal

45

Compilation d’un plugin

� Etape 1 : compilation séparée des fichiers
appartenant au plugins
� Besoin du chemin où sont stocker les headers servant au

plugin (comme gcc-plugin.h)
� Commande : gcc -print-file-name=plugin

� Donne le répertoire de base pour les fichies qui concernent les
plugins

� Besoin d’ajouter le sous-répertoire include pour la recherche
de header (option –I pour le compilateur)

� Etape 2 : link de ces fichiers pour créer une
bibliothèque dynamique
� Utilisation de l’option –shared
� Extension par convention : .so

46

Compilation d’un plugin

47

Exécution d’un plugin

� Pas d’exécution directe d’un plugin
� Fonction main dans le compilateur

� Plugin contrôlé par le compilateur

� Le compilateur connaît un point d’entrée pour le plugin
(fonction d’initialisation avec un prototype forcé)

� Option pour renseigner un plugin à utiliser lors de la
compilation
� -fplugin=name

� L’argument name est le nom de la bibliothèque dynamique
contenant le plugin (e.g., plugin.so)

� Possibilité d’utiliser plusieurs plugins !

48

Exécution d’un plugin

49

Exécution d’un plugin

50

Structures d’initialisation

� Rappel : fonction d’initialisation du plugin
int plugin_init (

struct plugin_name_args *plugin_info,
struct plugin_gcc_version *version

) ;

� Deux arguments en entrée de la fonction
� Arguments fournis par le compilateur

� Correspond à deux pointeurs sur des structures

� Information sur le contexte d’exécution
� Définition dans le header gcc-plugin.h

51

Information sur GCC

� Second argument : informations sur le compilateur
qui exécute ce plugin

� Détail de cette structure
struct plugin_gcc_version
{

const char *basever;

const char *datestamp;

const char *devphase;

const char *revision;

const char *configuration_arguments;

};

52

Information sur GCC

53

Information sur le plugin

� Premier argument : informations sur le contexte d’exécution du plugin

� Détail de cette structure
struct plugin_name_args {

char *base_name; /* Short name of the plugin
(filename without .so suffix). */

const char *full_name; /* Path to the plugin as spe cified
with -fplugin=. */

int argc; /* Number of arguments specified with
-fplugin-arg-.... */

struct plugin_argument *argv; /* Array of ARGC
key-value pairs. */

const char *version; /* Version string provided by
plugin. */

const char *help; /* Help string provided by plugin . */
}

54

Information sur le plugin

� Le champ argv représente les arguments donnés au plugin lors
de l’exécution de la compilation
� Option : -fplugin-arg-name-key1[=value1]
� Nom du plugin (sans le chemin, ni l’extension .so) : name
� Nom de l’argument : key1
� Valeur de l’argument (optionnelle) : value1

� Structure pour accéder aux arguments
struct plugin_argument {

char *key; /* key of the argument. */
char *value; /* value is optional and

can be NULL. */
};

55

Information sur le plugin

56

Information sur le plugin

Plan du cours

� Présentation de GCC

� Introduction

� Structuré générale

� Installation

� Modification du compilateur

� Plugin

� Evénement

� Pass manager

� Manipulation du code
� Structures GIMPLE

� Structures CFG

57

58

Evènement d’un plugin

� Pour le moment, le plugin s’initialise
� Dans cette fonction, il faut donner des infos au compilateur

sur le comportement de notre plugin

� Programmation évènementielle avec des callbacks
� Enregistrement d’évènements à capturer par le plugin

� Appel d’une fonction pour l’enregistrement avec un type
d’évènement

� Ajout d’un pointeur de fonction pour désigner la fonction
que le compilateur doit appeler lorsque l’évènement se
produit

� Liste des évènements dans le fichier plugin.def

59

Liste exhaustive
� PLUGIN_PASS_MANAGER_SETUP,
� PLUGIN_FINISH_TYPE,
� PLUGIN_FINISH_DECL,
� PLUGIN_FINISH_UNIT,
� PLUGIN_PRE_GENERICIZE,
� PLUGIN_FINISH,
� PLUGIN_INFO,
� PLUGIN_GGC_START,
� PLUGIN_GGC_MARKING,
� PLUGIN_GGC_END,
� PLUGIN_REGISTER_GGC_ROOTS,
� PLUGIN_REGISTER_GGC_CACHES,
� PLUGIN_ATTRIBUTES,
� PLUGIN_START_UNIT,
� PLUGIN_PRAGMAS,
� PLUGIN_ALL_PASSES_START,
� PLUGIN_ALL_PASSES_END,
� PLUGIN_ALL_IPA_PASSES_START,
� PLUGIN_ALL_IPA_PASSES_END,
� PLUGIN_OVERRIDE_GATE,
� PLUGIN_PASS_EXECUTION,
� PLUGIN_EARLY_GIMPLE_PASSES_START,
� PLUGIN_EARLY_GIMPLE_PASSES_END,
� PLUGIN_NEW_PASS,
� PLUGIN_EVENT_FIRST_DYNAMIC

60

Evènements intéressants

� PLUGIN_PASS_MANAGER_SETUP
� Permet d’interagir avec le pass manager pour ajouter une

nouvelle passe

� PLUGIN_START_UNIT
� Utile pour initialiser des données (e.g., ouverture de fichiers)

au début de la compilation d’un fichier

� PLUGIN_FINISH ou PLUGIN_FINISH_UNIT
� Utile pour finaliser des données (e.g., fermeture de fichiers)

à la fin de la compilation d’un fichier

� PLUGIN_PRAGMAS
� Ajout de la reconnaissance d’une directive (#pragma en

C/C++)

61

Enregistrement
� Fonction pour enregister un évènement :

void register_callback (const char *plugin_name,
int event,
plugin_callback_func callback,
void *user_data);

� Arguments
� plugin_name : nom du plugin sans le chemin ni l’extension

� Utilisation de plugin_info->base_name pour le plugin courant

� event : évènement à enregistrer
� callback : fonction appelée lorsque cet évènement apparait
� user_data : données utilisateurs utiles pour le callback

� Selon les évènements,
� callback peut être NULL
� user_data peut être NULL

� Prototype de la fonction de call back
void (*plugin_callback_func) (void *gcc_data, void *user_data);

62

Exemple de callback

63

Exemple de callback

Plan du cours

� Présentation de GCC

� Introduction

� Structuré générale

� Installation

� Modification du compilateur

� Plugin

� Evénement

� Pass manager

� Manipulation du code
� Structures GIMPLE

� Structures CFG

64

65

Création d’une nouvelle passe

� Etapes pour ajouter une nouvelle
passe

1. Définition d’une nouvelle passe

2. Insertion dans le pass manager

3. Enregistrement de l’évènement associé
pour le plugin

66

1 - Définition d’une passe

� Structure d’une passe
� Définie dans tree-pass.h
� Localisée dans répertoire include des plugins

� Nom : struct opt_pass

� Champs intéressants :
� Type de passes (voir ci-après)

enum opt_pass_type type

� Nom de la passe
const char *name ;

� Fonction pour la décision d’exécution
bool (*gate) (void) ;

� Fonction d’exécution de la passe
unsigned int (*execute) (void) ;

67

1 - Définition d’une passe

� Type de passe (différences ?)
enum opt_pass_type {

GIMPLE_PASS,
RTL_PASS,
SIMPLE_IPA_PASS,
IPA_PASS

};

� Fonction pour la décision d’exécution
� Retourne un booléen
� Permet d’activer la passe seulement dans un contexte particulier (niveau

d’optimisation, option, …)

� Fonction d’exécution de la passe
� Corps de la passe proprement dite
� Cette fonction n’est appelée que si la gate a répondue VRAI

68

2 – Insertion de la passe
� Interaction avec le pass manager

� Une fois notre passe définie, besoin de l’insérer dans le processus de compilation
� Besoin également de donner plusieurs infos (e.g., la fréquence de décisions)

� Structure permettant de renseigner les informations sur la passe et son insertion
struct register_pass_info {

struct opt_pass *pass; /* New pass provided by the plugin. */
const char *reference_pass_name; /* Name of the reference pass

for hooking up the new pass. */
int ref_pass_instance_number; /* Insert the pass at the specified

instance number of the reference pass. */
/* Do it for every instance if it is 0. */

enum pass_positioning_ops pos_op; /* how to insert the new pass. */

};
� Positionnement de la passe
enum pass_positioning_ops {

PASS_POS_INSERT_AFTER, // Insert after the reference pass.
PASS_POS_INSERT_BEFORE, // Insert before the reference pass.
PASS_POS_REPLACE // Replace the reference pass.

};

69

3 - Enregistrement

� Utilisation de l’évènement
PLUGIN_PASS_MANAGER_SETUP

� Appel à la fonction d’enregistrement
register_callback
� Fonction de callback � NULL

� Fonctions nécessaires pour décider et exécuter la passe sont
contenues dans l’instance de la structure opt_pass

� Pointeur user_data � pointeur sur une structure pour
renseigner les informations sur la passe (adresse sur
instance de register_pass_info)

70

Exemple

71

Exemple

72

Pass Manager

� Nécessité de connaître l’ordre des passes exécutées
par GCC !

� Besoin de regarder le code du pass manager
� Dans les sources du compilateur

� Pas disponible dans les headers relatifs aux plugins

� Pass manager
� Sous-répertoire gcc
� Fichier passes.c
� Fonction init_optimization_passes

� Plusieurs types de passes
� Lowering, IPA, All passes, …

73

Pass Manager

Notre plugin
a inséré une
passe à cet

endroit

74

Nom des passes

� Une fois la position trouvée, il
manque une information

� Le nom de la passe de
référence

� Comment trouver ce nom ?
� Pas de solution immédiate

simple
� Besoin de regarder la structure

qui définit cette passe
� Si vous trouvez une meilleure

solution…

� Exemple : fichier omp-low.c

Plan du cours

� Présentation de GCC

� Introduction

� Structuré générale

� Installation

� Modification du compilateur

� Plugin

� Evénement

� Pass manager

� Manipulation du code

� Structures GIMPLE

� Structures CFG

75

76

Manipulation du code

� Focalisation sur les passes en GIMPLE
� Code source du fichier à compiler représenté en GIMPLE
� GIMPLE est notre représentation intermédiaire

� Gestion du code en GIMPLE
� Deux étapes : avant et après la création du graphe de flot de

contrôle (CFG)

� Avant la création du CFG :
� Tout peut être fait grâce à un traitement itératif en GIMPLE

(récursif)
� Documentation : gimple.def gimple.h gimple.c

� Après la création du CFG :
� Accès au code à travers le graphe de flot de contrôle

77

Fichier source en GIMPLE

78

Fichier source avec le CFG

79

Exemple de passe GIMPLE
� Première passe de lowering :

warn_unused_result
� Affiche un warning lorsque le retour d’un

appel de fonction n’est pas capturé et que
cette fonction a un attribut
warn_unused_result

� Fonction
� do_warn_unused_result

(gimple_body
(current_function_decl));

� current_function_decl
� Pointeur vers la racine de la déclaration de

la fonction courante
� Tout le corps de la fonction (ainsi que les

arguments, le retour et les variables
locales) est accessible à partir de ce
pointeur

� Accès à la représentation gimple de la
fonction

� gimple_seq gimple_body(tree t)

80

Exemple de passe GIMPLE

Itérateur de
statementBoucle

d’itération
sur les

statements Accès à la
représentation

GIMPLE du
statementAccès au

type
d’instruction

Type de nœud
possédant un
ensemble de
statements

Appel récursif

81

Construction du CFG

� Une fois le graphe de flot de contrôle (CFG) construit
� Passage par la structure du CFG pour la manipulation du code
� Ensemble de nœuds et d’arcs

� Passe qui construit le CFG
� Nom dans le pass manager : pass_build_cfg
� Nom de la passe : cfg

� Structures utilisées pour le CFG
� struct control_flow_graph
� CFG de la fonction courante :

cfun->cfg

82

Structure principale du CFG

83

Noeuds du CFG
� Basic block

typedef struct basic_block_def *basic_block;

� Fichiers concernées :
� coretypes.h , basic-block.h

� Champs
� Vecteurs d’arc (edge) entrant et sortant : preds , succs
� Double liste chaînée : prev_bb , next_bb
� Indice dans le vecteur des BBs : index
� Ensemble de flags…

� Notion de vecteurs : cf. vec.h pour plus d’infos…

� Deux BB spéciaux (source et puits)
� ENTRY_BLOCK_PTR
� EXIT_BLOCK_PTR

84

Arcs du CFG

� Edge
typedef struct edge_def *edge;

� Fichiers concernées :
� coretypes.h , basic-block.h

� Champs
� Source de l’arc : src

� Destination de l’arc : dest
� Indice dans le vecteur de destination : dest_idx

� Ensemble de flags…

85

Parcours du CFG

� Parcours du corps de la fonction à travers le CFG
� Possibilité d’itérer sur les nœuds
� Ensuite, sur les arcs

� Plusieurs solutions pour le parcours des nœuds
� Tous les bloc de base sauf source et puits (peu importe leur ordre)

basic_block bb;
FOR_EACH_BB (bb) { /* … */ }

� Tous les bloc de base (peu importe leur ordre)
basic_block bb;
FOR_ALL_BB (bb) { /* … */ }

� Commencer au premier BB
basick_block bb = ENTRY_BLOCK_PTR ;

86

Parcours du CFG

� Exemple simple du parcours du CFG
� Itération sur tous les BBs (sauf source et puits)
� Ordre non défini

gimple_stmt_iterator gsi;
gimple stmt;

FOR_EACH_BB (b)
{

for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_ next
(&gsi))

{
stmt = gsi_stmt (gsi);
/* … */

}
}

87

Exemple

88

Exemple

89

Conclusion

� Modification du compilateur possible grâce à un
plugin
� Avantage : en dehors des sources du cœur du compilateur

� Inconvénient : modifications limitées

� Documentation
� Manuel internals et transparents disponibles

� Documentation la plus efficace : code source

� Représentation intermédiaire
� Attention au type de représentation utilisée (Arbre GIMPLE,

CFG, les deux, …)

� Certaines données ne sont construites que plus tard (par
exemple boucles)

