
Debugging Système et Noyau
-

Travaux Pratique

Aurélien Cedeyn

2017-2018



1 Préparation
1. Vous disposez d’une machine virtuelle préparer pour suivre ce TP.

— Utilisateurs :
— root : debug
— user : debuguser

2. À la fin de ce TP vous devrez rendre vos différentes réponses avec les
sorties de vos commandes en suivant le format suivant :
— Un répertoire à vos nom et prénoms
— Un un fichier par question

Format des réponses
$ ls aurelien.cedeyn/ -l
total 0
-rw-rw-r-- 1 mat mat 0 nov. 27 22:47 2.1
-rw-rw-r-- 1 mat mat 0 nov. 27 22:47 3.1
-rw-rw-r-- 1 mat mat 0 nov. 27 22:47 3.2
-rw-rw-r-- 1 mat mat 0 nov. 27 22:47 3.3
-rw-rw-r-- 1 mat mat 0 nov. 27 22:47 3.4

1



Première partie

User space
2 L’espace utilisateur

1. Lister les processus de votre utilisateur
2. Afficher les fichiers lus par la commande ps
3. Afficher le nombre d’appels systèmes effectués par la commande ps

-elf
4. Que fait la commande lsof ?

— Utilisez un des outils vu précédemment en cours pour voir les ap-
pels systèmes effectués par cette commande.

— Quels fichiers ouvre-t-elle ?
— Quels sont les appels aux librairies externes effectués cette com-

mande ?
— Quels est la fonction la plus appelée pas lsof ?
— À quoi sert-elle ?

3 La pile
1. Écrire un programme en C qui dépasse la taille de la pile.

— Indice : ulimit -a permet de connaître les restrictions du système
— Quelles sont les différentes façons, selon vous, de dépasser la taille

de la pile ?
— Quelle erreur obtenez-vous ? Que signifie-t-elle ?
— Comment corriger le programme ou l’environnement pour ne plus

avoir cette erreur ?

2



4 La compilation/gdb
1. Compilez avec et sans les symboles de debug le programme C suivant

Indice : Pour compiler avec les symboles de debug : gcc -g source.c
-o binaire

infinite.c
#include <stdlib.h>
#include <unistd.h>

int check(char cond){
return(cond == 0);

}

void loop(void){
int a=0;

while(check(a == 0)){
usleep(1000);

}
}

int main(void) {
loop();
exit(0);

}

— Quelles différences observez vous entre les deux binaires ?
— Observez les symboles de débug avec la command readelf.

Indice : man readelf
2. Lancer le programme compilé avec les symboles de debug via gdb

— Affichez le code source dans gdb
— Débuter son exécution
— Interrompez-le et affichez sa pile d’appel

3. Prenez un corefile d’un processus sur la machine
— Lancer gdb avec le corefile généré
— Affichez la pile d’appel du processus.

4. Attachez-vous au processus crazy qui tourne sur la machine avec gdb
— Affichez le code source dans gdb
— Placez un point d’arrêt (breakpoint) sur à la ligne 12 de la fonction

main.
— Continuez le programme.

3



— Affichez la pile d’appel.
— Affichez la valeur de la variable count.
— Modifiez la pour que le programme se finisse.

4


