Debugging Systeme et Noyau

Travaux Pratique

Aurélien Cedeyn

2017-2018



1 Préparation

1. Vous disposez d’une machine virtuelle préparer pour suivre ce TP.
— Utilisateurs :
— root : debug
— user : debuguser

2. A la fin de ce TP vous devrez rendre vos différentes réponses avec les
sorties de vos commandes en suivant le format suivant :
— Un répertoire a vos nom et prénoms
— Un un fichier par question

Format des réponses
$ 1s aurelien.cedeyn/ -1

total O

-rw-rw-r-- 1 mat mat O nov. 27 22:47 2.1
-rw-rw-r-- 1 mat mat O nov. 27 22:47 3.1
-rw-rw-r-- 1 mat mat O nov. 27 22:47 3.2
-rw-rw-r-- 1 mat mat O nov. 27 22:47 3.3
-rw-rw-r-- 1 mat mat O nov. 27 22:47 3.4




Premiére partie

User space

2 L’espace utilisateur

1. Lister les processus de votre utilisateur
2. Afficher les fichiers lus par la commande ps

3. Afficher le nombre d’appels systémes effectués par la commande ps
-elf
4. Que fait la commande lsof ?
— Utilisez un des outils vu précédemment en cours pour voir les ap-
pels systéemes effectués par cette commande.
— Quels fichiers ouvre-t-elle ?
— Quels sont les appels aux librairies externes effectués cette com-
mande ?
— Quels est la fonction la plus appelée pas lsof 7
— A quoi sert-elle ?

3 La pile

1. Ecrire un programme en C qui dépasse la taille de la pile.
— Indice : ulimit -a permet de connaitre les restrictions du systéme
— Quelles sont les différentes fagons, selon vous, de dépasser la taille
de la pile?
— Quelle erreur obtenez-vous ? Que signifie-t-elle ?
— Comment corriger le programme ou ’environnement pour ne plus
avoir cette erreur ?



4 La compilation/gdb

1. Compilez avec et sans les symboles de debug le programme C suivant
Indice : Pour compiler avec les symboles de debug : gcc -g source.c
-0 binaire

infinite.c

#include <stdlib.h>
#include <unistd.h>

int check(char cond){
return(cond == 0);

b

void loop(void){
int a=0;

while(check(a == 0)){
usleep(1000);
}

int main(void) {
loopQ);
exit (0);

}

— Quelles différences observez vous entre les deux binaires ?
— Observez les symboles de débug avec la command readelf.
Indice : man readelf

2. Lancer le programme compilé avec les symboles de debug via gdb
— Affichez le code source dans gdb
— Débuter son exécution
— Interrompez-le et affichez sa pile d’appel

3. Prenez un corefile d'un processus sur la machine
— Lancer gdb avec le corefile généré
— Affichez la pile d’appel du processus.

4. Attachez-vous au processus crazy qui tourne sur la machine avec gdb
— Affichez le code source dans gdb
— Placez un point d’arrét (breakpoint) sur a la ligne 12 de la fonction
main.
— Continuez le programme.



— Affichez la pile d’appel.
— Affichez la valeur de la variable count.
— Modifiez la pour que le programme se finisse.



