Debugging Systéeme et Noyau

Aurélien Cedeyn
Ecole Nationale Supérieure d’Informatique pour I'Industrie et I'Entreprise

2017-2018

Debugger
o

Sommaire

o Debugger
@ Définitions
@ Les différents type d'analyse
@ Les différents univers
@ Ce que couvre ce cours

Debugger
L]
Définitions

Définitions

Définition

To search for and eliminate malfunctioning elements or errors in

Debugger
L]
Définitions

Définitions

Définition

To search for and eliminate malfunctioning elements or errors in

= Quand doit-on debugger?
= Une application ne se comporte pas comme elle le devrait
= Les performances du systéme ne correspondent pas aux attentes
= Problemes de sécurité
= Plantage du systéme
= Quels outils ?
= Pour chaque élément du systéme a observer, il faut choisir le ou les outils
les mieux adaptés a la situation.
= Certains outils sont orientés utilisateur, d'autre systéme, certains autres font
la jonction entre les deux univers.

= Que chercher?

= Se poser des questions et faire preuve d'imagination

Debugger
L]
Les différents type d'analyse

Les différents type d'analyse

= Activer, lire et comprendre les messages de log
= Tracer un processus
= Récupérer la pile d'exécution d'un processus

= Analyse la mémoire d'un processus

Debugger
L]
Les différents univers

Les différents univers

Définition

Au sein du systéme d’exploitation, on peut distinguer trois univers différents :
= |’espace utilisateur : tout ce qui est lancé par un utilisateur

= L’espace noyau : I'ensemble des composants internes du systéme
d’exploitation (les drivers, le noyau, les modules...)

= Le matériel : les périphériques, la mémoire, le CPU...

Debugger
L]
Les différents univers

Les différents univers

UserSpace et KernelSpace

Debugger
L]
Les différents univers

Les différents univers

UserSpace

Terminal / Window Manager
Systemd / Init

Code utilisateur

Librairie GNU C (libc)

Debugger
L]
Les différents univers

Les différents univers

UserSpace KernelSpace

Terminal / Window Manager

Systemd / Init Appels systémes (syscall)
Code utilisateur Services noyaux

Librairie GNU C (libc) Modules et drivers noyaux

L'espace utilisateur accéde aux fonctionnalités du noyau exclusivement via les
appels systemes (syscall).

Debugger
L]
Les différents univers

Les différents univers

UserSpace

Terminal / Window Manager
Systemd / Init
Code utilisateur

Librairie GNU C (libc)

KernelSpace

Appels systémes (syscall)
Services noyaux

Modules et drivers noyaux

Hardware

CPU
Mémoire

Périphériques

Via ses drivers, le noyau accede au matériel et les présente a |'espace utilisateur.

Debugger
L]
Ce que couvre ce cours

Ce que couvre ce cours

= Appréhender la construction d'un fichier binaire et comprendre les
mécanismes en jeux lors de son exécution.

Debugger
L]
Ce que couvre ce cours

Ce que couvre ce cours

= Appréhender la construction d'un fichier binaire et comprendre les
mécanismes en jeux lors de son exécution.

= Explorer les principaux outils disponibles permettant d’approcher le
debugging des processus en espace utilisateur.

Debugger
L]
Ce que couvre ce cours

Ce que couvre ce cours

= Appréhender la construction d'un fichier binaire et comprendre les
mécanismes en jeux lors de son exécution.

= Explorer les principaux outils disponibles permettant d’approcher le
debugging des processus en espace utilisateur.

= S'initier a la mise en place de systéeme de debugging en espace noyau.

Les instructions
°

Sommaire

o Les instructions
@ Introduction
@ La compilation
@ L'exécution

Les instructions
L]
Introduction

Introduction

Et si on commengait doucement ?

Avant tout, nous avons besoin de comprendre
un minimum d’instructions Assembleur x86 !

Les instructions

Introduction

Introduction
Et si on commengait doucement ?

Les instructions
L]

Introduction

Introduction

Et si on commengait doucement ?

Les registres
x, %rbx, %rcx, %rdx, %

® %rax : Accumulateur, sert a effectuer des calculs arithmétiques ou a envoyer un paramétre a une
interruption.

= %rbx : Registre auxiliaire de base, sert a effectuer des calculs arithmétiques ou bien des calculs sur les
adresses.

" %rcx Registre auxiliaire (compteur), sert généralement comme compteur dans des boucles.

" %rdx Registre auxiliaire de données, sert a stocker des données destinées 3 des fonctions.

"= %rdi Registre contenant un index de destination : utilisée comme adresse source pour les copies de données
%rsi Registre contenant un index de source : utilisé comme adresse source pour les copies de données

" %r[8-15] Registres complémentaires

rax (64bits)

eax (32bits)

ax (16 bits)
ah al
(8bits) (8bits)

Les instructions
L]

Introduction

Introduction

Et si on commengait doucement ?

Les instructions

mov src, dest

= copie la source (src) vers la destination (dest)

= l'instruction peut-étre suffixée par (q,/,w,s,b) et correspond au nombre de
bits a copier (ex : | - long (4 octets))

syscall

= Instruction d’'exécution d’une interruption logicielle.

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

Use the source Luke.

$ vim add.c

Le code source - langage C

void main(void){
exit(2);
}

$ vim add.s

Le code source - Assembleur x86_64

_start

mov $60, %rax
mov $2, %rdi
syscall

Plus d'informations sur l'interface avec les appels systémes et Linux en
assembleur :
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

Use the source Luke.
$ vim add.c

Le COde source - langage C ® main : fonction principale
du programme
void main(void){ ® exit : appel systeme
exit(2);

I

$ vim add.s

Le code source - Assembleur x86_64

_start

start
mov $60, %rax
mov $2, %rdi
syscall

Plus d'informations sur l'interface avec les appels systémes et Linux en
assembleur :

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

Use the source Luke.

$ vim add.c

Le code source - langage C

void main(void){
exit(2);

3} " mov $60, rax : numéro de
I'appel systeme

$ vim add.s " mov $2, rdi : paramétre de
I'appel systéeme

Le code source - Assembleur x86_64 " syscall: appel systéme

_start

start
mov $60, %rax
mov $2, %rdi
syscall

Plus d'informations sur l'interface avec les appels systémes et Linux en
assembleur :
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

Use the source Luke.

$ vim add.c

Le code source - langage C

void main(void){
exit(2);
}

$ vim add.s

Le code source - Assembleur x86__32

= mov $1, eax : numéro de

I'appel systéme
_start

® mov $2, ebx : paramétre de

A I'appel systéme
movl $1, %eax . s
movl $2, %ebx " int $0x80 : appel systéme
int $0x80

Plus d'informations sur l'interface avec les appels systémes et Linux en
assembleur :
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

Le compilateur se charge de transformer le code source en code objet binaire.
$ as add.s -o add.o

code machine binaire - Compilateur

file format elf64-x86-64

Sections:

Idx Name Size VMA LMA File off Algn
00000010 0000000000000000 0000000000000000 00000040 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE
00000000 0000000000000000 0000000000000000 00000050 2**0
CONTENTS, ALLOC, LOAD, DATA
00000000 00000C)00)00000000 00000050 2%*0
ALLOC

of section .text:

7c03c 00000048 c7c70200 00000£05 H..[<|...H........

Disassembly of section .text:

Bl

c7 0 3c 00 00 00 mov $0x3c,Y%rax
€7 c7 02 00 00 00 mov $0x2,%rdi
[oe 05 syscall

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

Le linker se charge de transformer |'objet binaire obtenu en code exécutable.
$ 1d add.o -o add

L'exécutable - Linker (

file format elf64-x86-64

Sections:

Idx Name Size VMA LMA File off Algn
00000010 0000000000400078 0000000000400078 00000078 2%*0
CONTENTS, ALLOC, LOAD, READONLY, CODE

Contents of section .text:

575035 00000048 c7c70200 00000f05 H.

Disassembly of section .text:

(0000000000400078|

€7 cO 3¢ 00 00 00 mov $0x3c,%rax
c7 7 02 00 00 00 mov $0x2,%rdi
P o5 syscall

Les instructions
L]
La compilation

Les instructions
Des sources au fichier binaire

Définition

Une instruction est simplement un ensemble d'octets transmis au processeur.

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

Définition
Une instruction est simplement un ensemble d'octets transmis au processeur.

Instruction x86_64 (big indian

g file format elf64-x86-64

Sections

Idx Name Size VMA LMA File off Algn
00000010 0000000000400078 0000000000400078 00000078 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE

Contents of section .text:

[c7c03c 00000048 c7c70200 00000£05 H..

Disassembly of section .text:

0000000000400078] p:
€7 c0 3c 00 00 00 mov. $0x3c, rax
€7 7 02 00 00 00 mov $0x2,%rdi

@f 05 syscall

Les instructions
L]

La compilation

Les instructions

Des sources au fichier binaire

Définition
Une instruction est simplement un ensemble d'octets transmis au processeur.

Instructions ARM (little indian

add.arm: file format elf32-littlearm

Idx Name Size VMA LMA File off Algn
00000010 00008054 00008054 00000054 2%*2
CONTENTS, ALLOC, LOAD, READONLY, CODE
! 00000014 00000000 00000000 00000064 2%*0
CONTENTS, READONLY

Contents of section .text:

€3a00002 mov 0, #2
€3a07001 mov
5240004 push ; (str 10, [sp, #-411)
e£000000 svec 0x00000000)

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

Définition

Une instruction est simplement un ensemble d'octets transmis au processeur.

Lecture du fichier binaire

= $§ objdump -dsh add.o
= § xxd add.o

Les instructions
L]

La compilation

Les instructions
Des sources au fichier binaire

ELF™a Linux executable wm!Kﬁ\rough e
DISSECTED FLE '

HEADER

SMPLEG4ELF SECTIONS

HEADER

LOADING PROCESS
P TRIVIA
T STAEAY. A

https://imgur.com/a/JEObT

https://imgur.com/a/JEObT

Les instructions
@000
L’exécution

L'exécution

Mise en place en mémoire

uninitialized data

bss

initialized data

data

text

Les instructions
@000
L’exécution

L'exécution

Mise en place en mémoire

uninitialized data

bss

initialized data

data

text (fixé a la compilation)

text % . 5 5
Appelée aussi code section : ensemble du code exécutable.

Les instructions
@000
L’exécution

L'exécution

Mise en place en mémoire

initialized dat: P . .
unintialized data data (fixé a la compilation)
bss

Variables globales initialisées du code.

initialized data

data

text (fixé a la compilation)

text 2 . 5 5
Appelée aussi code section : ensemble du code exécutable.

Les instructions
@000

L’exécution

L'exécution

Mise en place en mémoire

stack
i
v
A
i
bss (fixé a la compilation)
heap) .
Block Started by Symbol : Variables globales non initialisées du code.
uninitialized data P . .
data (fixé a la compilation)
bss Variables globales initialisées du code.
initialized data
data 0 2 = 2 5
text (fixé a la compilation)
text Appelée aussi code section : ensemble du code exécutable.

Les instructions
@000

L’exécution

L'exécution

Mise en place en mémoire

heap (allouée a I'exécution)

Le tas : section mémoire utilisée pour allouer les variables dynamiques.

A

i
bss (fixé a la compilation)

heap . AT
Block Started by Symbol : Variables globales non initialisées du code.
uninitialized data P . .

data (fixé a la compilation)

bss Variables globales initialisées du code.

initialized data

data

text (fixé a la compilation)

text 2 . 5 5
Appelée aussi code section : ensemble du code exécutable.

Les instructions
@000

L’exécution

L'exécution

Mise en place en mémoire

uninitialized data

bss

initialized data

data

text

stack (allouée a |'exécution)

La pile contient la pile d'appel des fonctions, leur variables locales et les adresses de
fonctions externes.

heap (allouée a I'exécution)

Le tas : section mémoire utilisée pour allouer les variables dynamiques.

bss (fixé a la compilation)

Block Started by Symbol : Variables globales non initialisées du code.

data (fixé a la compilation)

Variables globales initialisées du code.

text (fixé a la compilation)

Appelée aussi code section : ensemble du code exécutable.

Les instructions
0@e00
L’exécution

L'exécution
Le déplacement dans la pile

A partir de ce moment nous avons un exécutable avec son code qui est monté
en mémoire a |'exécution.

C'est sur la pile que va se jouer I'exécution des différentes fonctions ainsi que le
passage de leurs parametres et de leurs valeurs de retour.

Les registres

Base Pointer : Adresse de base d'appel de la fonction

Stack Pointer : Adresse courante de la pile (stack)

Instruction Pointer : Adresse de la prochaine instruction

Les instructions
0@e00
L’exécution

L'exécution
Le déplacement dans la pile

A partir de ce moment nous avons un exécutable avec son code qui est monté
en mémoire a |'exécution.

C'est sur la pile que va se jouer I'exécution des différentes fonctions ainsi que le
passage de leurs parametres et de leurs valeurs de retour.

Les instructions

Pousse sur la stack le contenu du registre en paramétre.

Récupere la derniére valeur de la stack et place son contenu dans le registre
passé en paramétre.

Les instructions
0@e00
L’exécution

L'exécution
Le déplacement dans la pile

A partir de ce moment nous avons un exécutable avec son code qui est monté
en mémoire a |'exécution.

C'est sur la pile que va se jouer I'exécution des différentes fonctions ainsi que le
passage de leurs parametres et de leurs valeurs de retour.

Les instructions

Instruction d'appel de fonction. Elle procéde en 2 étapes :

= Sauvegarde de %rip sur la stack

= Déplacement de %rip a I'adresse demandée

Instruction de retour de fonction. Restauration de %rip sur la stack

Les instructions
(e]e] o]

L’exécution

Attention, on s'accroche!

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

On entre dans la fonction main, %rbp est sauvegardé

%rsp | Stack Yorip Assembleur - section text Code C
—0xf0 Oxff (%rbp) — 0x01 push %rbp - void main(void){
0xe0 0x02 mov %rsp,%rbp test() ;
0xd0 0x05 callg 0x12 <test> }
0xc0 0x09 mov $0x0,%eax void test(void){
0xb0 0x0d retq return in_test() ;
0xa0 0x12 push %rbp
0x13 mov %rsp,%rbp void in_test(void){
Ox1f callg 0x26 <in_test> return ;
0x24 pop %rbp
0x25 retq
0x26 push %rbp
0x27 mov %rsp,%rbp
0x2a nop
0x2b pop %rbp
0x2c retq

L’exécution

Les instructions
{eJele]]

L'exécution
Exemple d’exécution dans la stack (pile)

On place I'adresse de base de la stack a sa nouvelle valeur

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0xe0 — 0x02 mov %rsp,%rbp test() ;
0xd0 0x05 callq 0x12 <test>
0xc0 0x09 mov $0x0,%eax void test(void){
0xb0 0x0d retq return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp void in_test(void){

Ox1f callg 0x26 <in_test> return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Appel de la fonction test, %rip est poussé sur la stack et %rip prend la nouvelle
valeur de la fonction test

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
—0xe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
0xd0 — 0x05 callg 0x12 <test> }
0xc0 0x09 mov $0x0,%eax void test(void){
0xb0 0x0d retq return in_test() ;
0xa0 0x12 push %rbp
0x13 mov %rsp,%rbp void in_test(void){
Ox1f callg 0x26 <in_test> return ;
0x24 pop %rbp
0x25 retq
0x26 push %rbp
0x27 mov %rsp,%rbp
0x2a nop
0x2b pop %rbp
0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction test, et méme principe que pour la fonction main

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
—0xd0 0xe0 (%rbp) 0x05 callg 0x12 <test> }
0xc0 0x09 mov $0x0,%eax — void test(void){
0xb0 0x0d retq return in_test() ;
0xa0 — 0x12 push %rbp
0x13 mov %rsp,%rbp void in_test(void){
Ox1f callg 0x26 <in_test> return ;
0x24 pop %rbp
0x25 retq
0x26 push %rbp
0x27 mov %rsp,%rbp
0x2a nop
0x2b pop %rbp
0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction test, et méme principe que pour la fonction main

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
0xd0 0xe0 (%rbp) 0x05 callg 0x12 <test>
0xc0 0x09 mov $0x0,%eax — void test(void){
0xb0 0x0d retq return in_test() ;
0xa0 0x12 push %rbp
— 0x13 mov %rsp,%rbp void in_test(void){

Ox1f callg 0x26 <in_test> return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Appel de la fonction in_test, méme manipulation sur %rip

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
0xd0 0xe0 (%rbp) 0x05 callg 0x12 <test>
—0xc0 0x24 (test) 0x09 mov $0x0,%eax void test(void){

0xb0 0x0d retq — return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp void in_test(void){

— Ox1f callg 0x26 <in_test> return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

0x2c retq

Les instructions
{eJele]]

L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction in_test

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp test() ;

0xd0 0xe0 (%rbp)
0xc0 0x24 (test)

—0xb0 0xc0 (%rbp)
0xa0

0x05 callq 0x12 <test>
0x09 mov $0x0,%eax
0x0d retq

0x12 push %rbp

0x13 mov %rsp,%rbp

0x1f callq 0x26 <in_test>
0x24 pop %rbp

0x25 retq

— 0x26 push %rbp

0x27 mov %rsp,%rbp
0x2a nop

0x2b pop %rbp

0x2c retq

void test(void){
return in_test();

void in_test(void){
return;;

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction in_test

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
0xd0 0xe0 (%rbp) 0x05 callg 0x12 <test> }
0xc0 0x24 (test) 0x09 mov $0x0,%eax void test(void){
0xb0 0xc0 (%rbp) 0x0d retq — return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp — void in_test(void){

Ox1f callg 0x26 <in_test> return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

— 0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction in_test

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
0xd0 0xe0 (%rbp) 0x05 callg 0x12 <test> }
0xc0 0x24 (test) 0x09 mov $0x0,%eax void test(void){
0xb0 0xc0 (%rbp) 0x0d retq — return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp void in_test(void){

0x1f callg 0x26 <in_test> — return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

— 0x2a nop
0x2b pop %rbp
0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
0xd0 0xe0 (%rbp) 0x05 callg 0x12 <test>
0xc0 0x24 (test) 0x09 mov $0x0,%eax void test(void){
0xb0 0x0d retq — return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp void in_test(void){

0x1f callg 0x26 <in_test> — return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

—0x2b pop %rbp
0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
0xd0 0xe0 (%rbp) 0x05 callg 0x12 <test>
0xc0 0x09 mov $0x0,%eax void test(void){
0xb0 0x0d retq — return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp void in_test(void){

0x1f callg 0x26 <in_test> — return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

—0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0Oxe0 0x09 (main) 0x02 mov %rsp,%rbp — test() ;
0xd0 0x05 callq 0x12 <test>
0xc0 0x09 mov $0x0,%eax void test(void){
0xb0 0x0d retq — return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp void in_test(void){

Ox1f callg 0x26 <in_test> return ;

—0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0xe0 0x02 mov %rsp,%rbp - test() ;
0xd0 0x05 callq 0x12 <test>
0xc0 0x09 mov $0x0,%eax void test(void){
0xb0 0x0d retq return in_test() ;
0xa0 0x12 push %rbp
0x13 mov %rsp,%rbp void in_test(void){
Ox1f callg 0x26 <in_test> return ;

0x24 pop %rbp
—0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0xe0 0x02 mov %rsp,%rbp test() ;
0xd0 0x05 callq 0x12 <test> —
0xc0 —0x09 mov $0x0,%eax void test(void){
0xb0 0x0d retq return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp void in_test(void){

Ox1f callg 0x26 <in_test> return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

0x2c retq

Les instructions
{eJele]]
L’exécution

L'exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp | Stack Yorip Assembleur - section text Code C
0xf0 Oxff (%rbp) 0x01 push %rbp void main(void){
0xe0 0x02 mov %rsp,%rbp test() ;
0xd0 0x05 callq 0x12 <test> —
0xc0 0x09 mov $0x0,%eax void test(void){
0xb0 —0x0d retq return in_test() ;
0xa0 0x12 push %rbp

0x13 mov %rsp,%rbp void in_test(void){

Ox1f callg 0x26 <in_test> return ;

0x24 pop %rbp

0x25 retq

0x26 push %rbp

0x27 mov %rsp,%rbp

0x2a nop

0x2b pop %rbp

0x2c retq

Processus utilisateur
o

Sommaire

e Processus utilisateur
@ ps, top...
@ strace, ltrace
@ Les sources
@ gdb
@ gdb
@ gdb
@ gdb

Processus utilisateur
@000

Les deux outils ps et top permettent de consulter la structure mémoire d'un
processus (task_struct).

Processus utilisateur
@000

On consulte la consommation CPU et mémoire de chaque processus, ainsi que
I'état dans lequel il se trouve (en cours d’exécution, stoppé, bloqué, zombie...).
L] ps
= permet d’observer un ou plusieurs processus a un instant T
= systéme de filtrage par utilisateur, PID ...

= top
= Visualisation en continue des processus les plus actifs du systeme

= Consultation unifiée de I'uptime de la machine et de I'utilisation de
processeurs

Ces deux outils permettent de consulter la santé du sytéme d’exploitation.

Processus util
(o] lele)
ps, top...

Exemple de sortie avec la commande ps

ps aux £
USER PID %CPU %MEM VSZ RSS TTY STAT START ~ TIME COMMAND

root 2 0.0 0.0 0 07 S 0Octl9 0:00 [kthreadd]

root 3 0.0 0.0 0 07 S 0ct19 0:05 _ [ksoftirqd/0]
root 5 0.0 0.0 0 07 S< 0ct19 0:00 _ [kworker/0:OH]
root 7 0.0 0.0 0 07 S 0Oct19 4:58 _ [rcu_sched]
root 8 0.0 0.0 0 07 S 0ct19 0:00 _ [rcu_bh]

root 9 0.0 0.0 0 07 S 0ct19 0:01 _ [migration/0]
root 10 0.0 0.0 0 07 S 0ct19 0:00 _ [watchdog/0]
root 11 0.0 0.0 0 07 S 0ct19 0:00 _ [watchdog/1]
root 12 0.0 0.0 0 [S 0ct19 0:01 _ [migration/1]
root 13 0.0 0.0 0 07 S 0ct19 0:02 _ [ksoftirqd/1]
root 15 0.0 0.0 0 07 S< 0ct19 0:00 _ [kworker/1:O0H]
root 16 0.0 0.0 0 07 S 0ct19 0:00 _ [watchdog/2]
root 17 0.0 0.0 0 07 S 0ct19 0:01 _ [migration/2]
root 18 0.0 0.0 0 07 S 0ct19 0:02 _ [ksoftirqd/2]

Les diffé

® PID : Id du processus
= %CPU : Pourcentage d'occupation CPU

ts champs (ps aux

" %MEM : Pourcentage d'occupation Mémoire

= VSZ : Mémoire virtuellement utilisable

®= RSS : Mémoire réellement utilisée

® TTY : Terminal attaché au processus

= STAT : Status du processus

®= START : Date de début du processus

® TIME : Temps systéme consommé

= COMMAND : Ligne de commande du processus

Processus utilisateur
(o] lele)
ps, top...

Exemple de sortie avec la commande ps

ps aux £
USER PID %CPU %MEM VSZ RSS TTY STAT START ~ TIME COMMAND

root 2 0.0 0.0 0 07 S 0ct19 0:00 [kthreadd]

root 3 0.0 0.0 0 07 S 0ct19 0:05 _ [ksoftirqd/0]
root 5 0.0 0.0 0 07 S< 0ct19 0:00 _ [kworker/0:OH]
root 7 0.0 0.0 0 07 S 0Oct19 4:58 _ [rcu_sched]
root 8 0.0 0.0 0 07 S 0ct19 0:00 _ [rcu_bh]

root 9 0.0 0.0 0 07 S 0ct19 0:01 _ [migration/0]
root 10 0.0 0.0 0 07 S 0ct19 0:00 _ [watchdog/0]
root 11 0.0 0.0 0 07 S 0ct19 0:00 _ [watchdog/1]
root 12 0.0 0.0 0 [S 0ct19 0:01 _ [migration/1]
root 13 0.0 0.0 0 07 S 0ct19 0:02 _ [ksoftirqd/1]
root 15 0.0 0.0 0 07 S< 0ct19 0:00 _ [kworker/1:O0H]
root 16 0.0 0.0 0 07 S 0ct19 0:00 _ [watchdog/2]
root 17 0.0 0.0 0 07 S 0ct19 0:01 _ [migration/2]
root 18 0.0 0.0 0 07 S 0ct19 0:02 _ [ksoftirqd/2]

Ensemble des processus noyaux

ps, top...

Exemple de sortie avec la

Processus utilisateur
(o] lele)

commande ps

ps aux £
USER PID %CPU %MEM VSZ RSS TTY STAT START ~ TIME
root 2 0.0 0.0 0 07 S Octl9 0:00
root 3 0.0 0.0 0 07 S Octl9 0:05
root 5 0.0 0.0 0 07 S< Octl9 0:00
root 7 0.0 0.0 0 07 S Octl9 4:58
root 8 0.0 0.0 0 07 S 0ct19 0:00
root 9 0.0 0.0 0 07 S 0ct1s 0:01
root 10 0.0 0.0 0 07 S 0ct19 0:00
root 11 0.0 0.0 0 07 S Octld 0:00
root 12 0.0 0.0 0 07 S Oct19 0:01
root 13 0.0 0.0 0 07 S Octiy 0:02
root 15 0.0 0.0 0 07 S< Octl9 0:00
root 16 0.0 0.0 0 07 S 0Octi9 0:00
root 17 0.0 0.0 0 07 S 0Oct19 0:01
root 18 0.0 0.0 0 07 S Octis 0:02
root 1032 0.0 0.0 304632 2956 7 Ss1 0ct19 0:06
root 1036 0.0 0.0 274964 1332 7 Ssl 0ct19 0:00
root 1046 0.0 0.0 29028 532 7 Ss Oct19 0:00
root 1048 0.0 0.0 276204 368 7 Ssl 0ct19 0:03
root 1050 0.0 0.0 166456 240 7 Ssl Oct19 0:11
root 1054 0.0 0.0 337360 432 7 Ssl 0ct19 0:00
root 1056 0.0 0.0 449528 2804 ? Ssl Oct19 0:00
nobody 1316 0.0 0.0 52048 07 S Oct19 0:00
root 21637 0.0 0.0 16128 92 7 S 0ct22 0:00
root 1176 0.0 0.0 276816 372 7 SLsl Oct19 0:00

Suivis des processus utilisateurs

COMMAND

[kthreadd]

_ [ksoftirqd/0]
[kworker/0: OH]
[rcu_sched]
[rcu_bh]
[migration/0]
[watchdog/0]
[watchdog/1]
[migration/1]
[ksoftirqd/1]
[kworker/1:0H]
[watchdog/2]
[migration/2]
[ksoftirqd/2]

/usr/1ib/snapd/snapd

/usr/sbin/cups-browsed

/usr/sbin/cron -f

/usr/lib/accountsservice/accounts-daemon

/usr/sbin/thermald --no-daemon --dbus-enable
/usr/sbin/ModemManager

/usr/sbin/NetworkManager --no-daemon

_ /usr/sbin/dnsmasq --no-resolv --keep-in-foreground --no-h
_ /sbin/dhclient -d -q -sf /usr/lib/NetworkManager/nm-dhcp-
/usr/sbin/lightdn

Processus utilisateur
[e]e] o)
ps, top...

Exemple de sortie avec la commande top

top - 23:37:03 up 6 days, 1:54, 9 users, load average: 0,29, 0,35, 0,26
Taches: 260 total, 1 en cours, 258 en veille, 0 arrété, 1 zombie
%Cpu0 : 1,7 ut, 0,7 sy, 0,0 ni, 97,7 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st
top - 23:37:29 up 6 days, 1:54, 9 users, load average: 0.27, 0.33, 0.26
Tasks: 260 total, 1 running, 258 sleeping, 0 stopped, 1 zombie

%Cpuo 3.4 us, 1.1 sy, 0.0ni, 95.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpui : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 : 1.1 us, 0.0 sy, 0.0 ni, 98.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpud : 0.0 us, 1.1 sy, 0.0 ni, 98.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem : 5831144 total, 410448 free, 3567680 used, 1853016 buff/cache
KiB Swap: 6273020 total, 6043320 free, 229700 used. 1592284 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1231 root 20 0 375884 86940 35752 S 4.5 1.5 56:16.89 Xorg
22000 rachel 20 0 2905836 538740 154532 S 2.2 9.2 4:02.72 firefox
2345 mat 20 0 299152 42664 7084 S 1.1 0.7 82:23.29 awesome
5597 mat 20 0 39028 3432 2796 R 1.1 0.1 0:00.01 top
22103 rachel 20 0 2593304 761204 138880 S 1.1 13.1 6:30.29 Web Content
1 root 20 0 119904 4060 2388 S 0.0 0.1 0:03.34 systemd
2 root 20 [[[08 0.0 0.0 0:00.04 kthreadd
3 root 20 [0 [[0.0 0.0 0:05.30 ksoftirqd/0
5 root 0 -20 0 0 0Ss 0.0 0.0 0:00.00 kworker/0:0H
7 root 20 [[[0s 0.0 0.0 5:00.94 rcu_sched

Les premieres lignes donnent une vue synthétique de I'utilisation de la machine.

Processus utilisateur
[e]e]e])

ps, top...

Sous le capot

Chacune de ces commandes vont parcourir /proc, un pseudo filesystéme dans
lequel on peut trouver les informations de I'ensemble des processus de la

machine.

$ cat /proc/self/stat

16933 (cat) R 10118 15933 10118 34820 15933 4194304 88 0 0 0 0 0 0 0 20 0 1 O 30568230 7647232 193 3121741824

< 4194304 4240236 140732349587456 140732349586808 140640986640944 0 0 128 0 0 0 0 17 0 0 0 0 0 O 6340112 6341364
< 36347904 140732349592700 140732349592720 140732349592720 140732349595631 0

D’autres informations sont également disponible dans procfs et sont lus par

d'autre outils.

projid_map

$ 1s /proc/self/
oom_score

attr clear_refs cpuset fd limits mem
< sessionid stat task
autogroup cmdline cwd fdinfo loginuid mountinfo ns oom_score_adj root
sched smaps

< setgroups statm timers
auxv comm environ gid_map map_files mounts numa_maps pagemap
<> status uid_map

cgroup coredump_filter exe io maps

< syscall wchan

mountstats oom_adj personality schedstat stack

Processus utilisateur
000
strace, Itrace

strace

L'outil strace permet de voir I'ensemble des appels systémes effectués par un
processus. Les appels systemes sont également appelés syscall et correspondent
aux fonctions exposées par le noyau vers |'espace utilisateur.

Exemple d’utilisation de strace

strace -e open,getdents ls

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-1inux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-1inux-gnu/libc.so0.6", O_RDONLY|O_CLOEXEC) = 3

open ("/1ib/x86_64-1inux-gnu/libpcre.so.3", O_RDONLY|O_CLOEXEC) = 3
open ("/1ib/x86_64-1inux-gnu/1ibdl.so.2", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-1linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3
open("/proc/filesystens", O_RDONLY) -3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3

getdents(3, /x 2 entries */, 32768) = 48
getdents(3, /x 0 entries */, 32768) =0
+++ exited with 0 +++

strace est utilisé pour comprendre comment un processus en espace utilisateur
inter-agit avec le noyau via les appels systémes.

Processus utilisateur
000
strace, Itrace

strace

L'outil strace permet de voir I'ensemble des appels systémes effectués par un
processus. Les appels systemes sont également appelés syscall et correspondent
aux fonctions exposées par le noyau vers |'espace utilisateur.

Exemple d’utilisation de strace

strace -e open,getdents ls
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-1inux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-1inux-gnu/libc.so0.6", O_RDONLY|O_CLOEXEC) = 3
~linux-gnu/libpcre.so.3", O_RDONLY|O_CLOEXEC) = 3
open ("/1ib/x86_64-1inux-gnu/1ibdl.so.2", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-1linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3
open("/proc/filesystens", O_RDONLY) -3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3

getdents(3, /x 2 entries */, 32768) = 48

getdents(3, /x 0 entries */, 32768) =0

+++ exited with 0 +++

strace est utilisé pour comprendre comment un processus en espace utilisateur
inter-agit avec le noyau via les appels systémes.

syscall - int 0x80

Processus utilisateur
[e]
strace, Itrace

strace les options intéressantes

Ne sélectionner que certains appels

strace -e open,getdents ls
open("/etc/1d.so0.cache", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-1linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
open ("/1ib/x86_64-1inux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

open ("/1ib/x86_64-1inux-gnu/libpcre.so.3", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-1inux-gnu/1ibdl.so.2", O_RDONLY|O_CLOEXEC) = 3
open("/1ib/x86_64-linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3
open("/proc/filesystems", O_RDONLY) =3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3

getdents(3, /x 2 entries */, 32768) = 48

getdents(3, /x O entries */, 32768) =0

+++ exited with 0 +++

strace, Itrace

strace les options intéressantes

Processus utilisateur
[e]

Voir le temps passé dans chaque appel : -tt

22
22
22
22
22
22

22:
22:
22:

22
22
22
22
22
22

:42:17.942028 execve("/bin/ls", ["1s"], [/* 50 vars */1) = 0

:42:17.942537 brk(NULL) = 0xb60000

:42:17.942644 access("/etc/ld.so.nohwcap”, F_OK) = -1 ENOENT (No such file or directory)

:42:17.942774 mmap (NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7£978836£000

:42:17.942834 access("/etc/1d.so.preload”, R_OK) = -1 ENOENT (No such file or directory)

:42:17.942883 open("/etc/1d.so.cache”, O_RDONLY|O_CLOEXEC) = 3

42:17.942928 fstat(3, {st_mode=S_IFREG|0644, st_size=251122, ...}) = 0

42:17.942969 mmap(NULL, 251122, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7£9788331000

42:17.943007 close(3) =0

:42:17.943045 access("/etc/1d.so.nohwcap”, F_OK) = -1 ENOENT (No such file or directory)

:42:17.943096 open("/1ib/x86_64-1inux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

:42:17.943136 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\260Z\0\0O\O\O\O\O" ..., 832) = 832

:42:17.943177 fstat(3, {st_mode=S_IFREG|0644, st_size=130224, ...}) = 0

:42:17.943215 mmap (NULL, 2234080, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = Ox7£9787£2a000

:42:17.943255 mprotect (0x7£9787£49000, 2093056, PROT_NONE) = 0

:42:17.943297 mmap (0x7£9788148000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1e000) =
0x7£9788148000

:42:17.943346 mmap (0x7£978814a000, 5856, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) =
0x7£978814a000

:42:17.943390 close(3) =0

:42:17.943429 access("/etc/1d.so.nohwcap”, F_OK) = -1 ENOENT (No such file or directory)

:42:17.943473 open("/1ib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

:42:17.943613 read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\t\2\0\0\0\O\O"..., 832) = 832

:42:17.943650 fstat(3, {st_mode=S_IFREG|0755, st_size=1868984, ...}) = 0

:42:17.943588 mmap (NULL, 3971488, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = Ox7£9787b60000

:42:17.943657 mprotect (0x7£9787d20000, 2097152, PROT_NONE) = 0

:42:17.943707 mmap (0x7£9787£20000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c0000)
= 0x7£9787£20000

Processus utilisateur
[e]

strace, Itrace

strace les options intéressantes

mbre d'appel utilisés : -c

seconds usecs/call calls errors syscall

0.00 0.000000 0 7 read

0.00 0.000000 0 1 write

0.00 0.000000 0 8 open

0.00 0.000000 0o 10 close

0.00 0.000000 0 9 fstat

0.00 0.000000 0 18 mmap

0.00 0.000000 0 12 mprotect

0.00 0.000000 0 i munmap

0.00 0.000000 0 3 brk

0.00 0.000000 0 2 rt_sigaction

0.00 0.000000 0 1 rt_sigprocmask

0.00 0.000000 0 2 ioctl

0.00 0.000000 o 7 7 access

0.00 0.000000 0o 1 execve

0.00 0.000000 0o 2 getdents

0.00 0.000000 0 1 getrlimit

0.00 0.000000 0 2 2 statfs

0.00 0.000000 0 1 arch_prctl

0.00 0.000000 0 1 set_tid_address

0.00 0.000000 0 1 set_robust_list
100.00 0.000000 90 9 total

Processus utilisateur
strace, Itrace

strace les options intéressantes

S’attacher a un processus exista

strace: Process 26546 attached

epoll_wait(4, [{EPOLLIN, {u32-7, u64-=4294967303}}], 64, 59743) = 1

recvmsg (7, {msg_name(0)=NULL,

— msg_iov(1)=[{"\34\0\327\255\240\4\0\0003\1\0\0 M\373\24\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0O\O", 4096}],
<+ msg_controllen=0, msg_flags=0}, 0) = 32

recvmsg (7, 0x7£fc1169d900, 0) = -1 EAGAIN (Resource temporarily unavailable)

recvmsg (7, 0x7££fc1169d900, 0) = -1 EAGAIN (Resource temporarily unavailable)

epoll_wait(4, [{EPOLLIN, {u32=7, u64=4294967303}}1, 64, 59743) = 1

recvmsg(7, {msg_name(0)=NULL,

— msg_iov(1)=[{"\34\0\327\255\240\4\0\0004\1\0\0bM\373\24\0\0\0\0\0\0\0\0O\O\O\O\O\ONONONO" . . ., 4096},

<+ msg_controllen=0, msg_flags=0}, 0) = 160

recvmsg (7, 0x7££c1169d900, 0) = -1 EAGAIN (Resource temporarily unavailable)

recvmsg (7, 0x7£fc1169d7c0, 0) = -1 EAGAIN (Resource temporarily unavailable)

recvmsg (7, 0x7£fc1169d7c0, 0) = -1 EAGAIN (Resource temporarily unavailable)

poll([{£d=7, events=POLLIN|POLLOUT}], 1, -1) = 1 ([{fd=7, revents=POLLOUT}])

writev(7, [{"\£\32\7\0\24\0°\1\17\0"\1\0\0\0\0\20\0\0\0J\5\0\0\324\2\0\0\£\27\7\0" ..., 56}, {NULL, 0}, {"", 0}], 3)
— =56

recvmsg(7, {msg_name(0)=NULL,
— msg_iov(1)=[{"\26\0\330\255\24\0\1\24\0\1\16\07\1\0\0\20\0J\5\324\2\0\0\0\0\0\O\O\O" . .., 4096}],
<+ msg_controllen=0, msg_flags=0}, 0) = 64

recvmsg(7, 0x7£ffc1169d900, 0) = -1 EAGAIN (Resource temporarily unavailable)
recvmsg(7, 0x7£ffc1169d7c0, 0) = -1 EAGAIN (Resource temporarily unavailable)
recvmsg (7, 0x7£fc1169d7c0, 0) = -1 EAGAIN (Resource temporarily unavailable)

poll([{£fd=7, events=POLLIN|POLLOUT}], 1, -1) = 1 ([{fd=7, revents=POLLOUT}])

writev(7, [{"(\32\4\0\24\0"\1\240\4\0\0\0\0\0o\0", 16}, {NULL, O}, {"", 0}], 3) = 16

poll([{£fd=7, events=POLLIN}], 1, -1) = 1 ([{£d=7, revents=POLLIN}])

recvmsg(7, {msg_name(0)=NULL, msg_iov(1)=[{"\1\1\332\255\0\0\0\0Z\0\200\0\2\0$\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\O\O",
< 4096}], msg_controllen=0, msg_flags=0}, 0) = 32

Processus utilisateur
[ele] J
strace, Itrace

Itrace

L'outil /trace permet de voir I'ensemble des appels a la libc. Les informations
fournies ici correspondent aux différentes fonctions appelées dans les librairies
du systeme. Les appels systemes ne sont pas visibles.

ltrace -e opendir -e readdir ls

ltrace -e opendir -e readdir ls
1s->opendir(".") = 0xf6ébcal
1s->readdir (0xf6bca0) 0xf6bcd0
1s->readdir (0xf6bcal) 0xf6bce8
1s->readdir (0Oxf6ébcal) 0

+++ exited (status 0) +++

Itrace est utilisé pour comprendre le comportement d'un processus utilisateur
en dehors des appels systeme.

Les options

Itrace posséde les mémes options que strace :
= -e : selection des fonctions a observer
= -tt : temps passé dans chaque fonction
= -c : nombre d'appel utilisé pour chaque fonction

= -p : PID sur lequel s'attacher

Processus utilisateur
[ele] J

strace, Itrace

Itrace

L'outil /trace permet de voir I'ensemble des appels a la libc. Les informations
fournies ici correspondent aux différentes fonctions appelées dans les librairies

du systeme. Les-appelssystemesne-seontpas-visibles:

ltrace -e opendir -e readdir ls

ltrace -e opendir -e readdir ls
1s->opendir(".") = 0xf6ébcal
1s->readdir (0xf6bca0) 0xf6bcd0
1s->readdir (0xf6bcal) 0xf6bce8
1s->readdir (0Oxf6ébcal) 0

+++ exited (status 0) +++

Itrace est utilisé pour comprendre le comportement d'un processus utilisateur
en dehors des appels systeme.

Les options

Itrace posséde les mémes options que strace :
= -e : selection des fonctions a observer
= -tt : temps passé dans chaque fonction
= -c : nombre d'appel utilisé pour chaque fonction

= -p : PID sur lequel s'attacher

= -S : affiche également les appels systémes

Les sources

Les sources

n eh S0urCE
p

Dpen source
Dpen source
Dpen rource
Dpen source
Dpen source

Processus utilisateur

is good For me
s good for me
s good for me
e good for me
s good for me
is good for me

. T will fully embrace &
. T will fully embrace &
. T will Fully embrace &
. T will fully embrace &
. Twl fully embrace &
. T will fully embar

Processus utilisateur

Les sources

Les sources

Le point fondamental permettant de debugger efficacement est d’avoir acces
aux sources. Qu'il s’agisse du noyau ou d'un autre programme, les sources
facilitent grandement la compréhension d'un probléeme.

Pour avoir un environnement de debugging complet, il faut :
= La version du logiciel a debugger

= Les sources correspondantes
= Les symboles de debug : fournis par la distribution ou a compiler soi-méme

Processus utilisateur

Les sources

Les sources

Les sources du noyau sont trés importantes et volumineuses, rechercher dans le
code source une définition de fonction ou un symbole particulier peut s'avérer
trées compliqué.

Pour nous faciliter la tache, I'outil cscope permet de naviguer facilement dans
un gros projet écrit en C.

= Le noyau supporte directement |'indexation de cscope : make cscope

= cscope -d -R

Processus utilisateur
0000
Les sources

Les sources

cscope

Global definition: task_struct

File Line
0 profile.h 66 struct task_struct;
1 regset.h 20 struct task_struct;
2 regset.h 39 typedef int user_regset_active_fn(struct task_struct xtarget,
3 regset.h 58 typedef int user_regset_get_fn(struct task_struct xtarget,
4 regset.h 79 typedef int user_regset_set_fn(struct task_struct *target,
5 regset.h 105 typedef int user_regset_writeback_fn(struct task_struct *target,
6 resource.h 7 struct task_struct;
7 sched.h 483 struct task_struct {
8 autogroup.h 5 struct task_struct;
9 debug.h 8 struct task_struct;
a jobctl.h 6 struct task_struct;

* Press the space bar to display the first lines again *

Find this C symbol:
Find this global definition: task_struct
Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Find assignments to this symbol:

Les sources

gdb

Processus utilisateur
| Jele]e]

gdb est 'outil par excellence de debug. Il permet d'inspecter le comportement
et le contenu d'un exécutable.

Permet de lancer I'exécution d'un programme pas a pas (breakpoints)
Visualise les différentes variables des fonctions en cours

Affiche la pile d’exécution

Affiche les registres

Peut aussi modifier le comportement du programme (en modifiant des
variables par exemple)

Il existe 2 modes de lancement pour gdb

Mode classique au lancement de |'exécutable

gdb <exécutable> [paramétres de |'exécutable]

Mode attachement a un processus en cours

gdb -p <PID>

Processus utilisateur
(o] lee]

Les sources

gdb

Les commandes principales
= break <ligne> : place un point d’arrét dans le code

Exemple d’utilisation de gdb

(gdb) break opendir
Breakpoint 1 at Ox7ffff78b3140: file ../sysdeps/posix/opendir.c, line 181.
(gdb) run /

Starting program: /bin/ls /

[Thread debugging using libthread_db enabled]

Using host libthread_db library "~ /1ib/x86_64-linux-gnu/libthread_db.so.1''.

Breakpoint 1, _{opendir (name=0x625ccO ~"/'') at ../sysdeps/posix/opendir.c:182
182 ../sysdeps/posix/opendir.c: Aucun fichier ou dossier de ce type.
(gdb) where

#0 _{opendir (name=0z625cc0 "°/'') at ../sysdeps/posiz/opendir.c:182

—

#1 0x0000000000403849 in 22 (

#2 0z00007ffff780b830 in _{libc_start_main (main=0402a00, argc=2,
argv=0x7fffffffel18, init=<optimized out>, fini=<optimized out>,
rtld_fini=<optimized out>, stack_end=0x7fffffffel108)
at ../csu/libc-start.c:291
#3 0200000000004049¢c9 in 22 (VF)}}

Processus utilisateur
(o] lee]

Les sources

gdb

Les commandes principales
= break <ligne> : place un point d’arrét dans le code

= run <args> : lance I'exécutable avec les arguments spécifiés

Exemple d’utilisation de gdb

(gdb) break opendir
Breakpoint 1 at Ox7ffff78b3140: file ../sysdeps/posix/opendir.c, line 181.
(gdb) run /

Starting program: /bin/ls /

[Thread debugging using libthread_db enabled]

Using host libthread_db library "~ /1ib/x86_64-linux-gnu/libthread_db.so.1''.

Breakpoint 1, _{opendir (name=0x625ccO ~"/'') at ../sysdeps/posix/opendir.c:182
182 ../sysdeps/posix/opendir.c: Aucun fichier ou dossier de ce type.
(gdb) where

#0 _{opendir (name=0z625cc0 "°/'') at ../sysdeps/posiz/opendir.c:182

—

#1 0x0000000000403849 in 22 (

#2 0z00007ffff780b830 in _{libc_start_main (main=0402a00, argc=2,
argv=0x7fffffffel18, init=<optimized out>, fini=<optimized out>,
rtld_fini=<optimized out>, stack_end=0x7fffffffel08)
at ../csu/libc-start.c:291
#3 0200000000004049¢c9 in 22 (VF)}}

Processus util

Les sources

gdb

Les commandes principales

= break <ligne> : place un point d'arrét dans le code
= run <args> : lance I'exécutable avec les arguments spécifiés

= where : affiche la pile d'appel d’exécution

Exemple d’utilisation de gdb
(gdb) break opendir

Breakpoint 1 at Ox7ffff78b3140: file ../sysdeps/posix/opendir.c, line 181.
(gdb) run /

Starting program: /bin/ls /

[Thread debugging using libthread_db enabled]

Using host libthread_db library ~~/1ib/x86_64-linux-gnu/libthread_db.so.1''.

Breakpoint 1, _{opendir (name=0x625ccO ~"/'') at ../sysdeps/posix/opendir.c:182
182 ../sysdeps/posix/opendir.c: Aucun fichier ou dossier de ce type.
(gdb) where

#0 _{opendir (name=0z625cc0 "°/'') at ../sysdeps/posiz/opendir.c:182

—

#1 0x0000000000403849 in 22 (

#2 0z00007ffff780b830 in _{libc_start_main (main=0c402a00, argc=2
argv=0x7fffffffel18, init=<optimized out>, fini=<optimized out>,
rtld_fini=<optimized out>, stack_end=0x7fffffffel08)
at ../csu/libc-start.c:291
#3 0200000000004049¢c9 in 22 (VF)}}

Processus utilisateur
(o] lee]

Les sources

gdb

Les commandes principales

= break <ligne> : place un point d'arrét dans le code
= run <args> : lance I'exécutable avec les arguments spécifiés

= where : affiche la pile d'appel d’exécution

—_ Exemple de backtrace de tous les threads d’un processus utilisateur —4
(gdb) thread apply all where

Thread 1 (LWP 20141):

#0 0z00007fd16877807a in __GI___waitpid (pid=-1, stat_loc=0z7fffbce8c220, options=10) at
— ../sysdeps/uniz/sysv/linuc/waitpid.c:29

#1 0z000000000044706d in ?? ()

#2 0z000000000044854b in wait_for ()

#3 0z00000000004384bf in ewecute_command_internal ()

#{ 0z000000000043851e in ezecute_command ()

#5 0z000000000042139¢ in reader_loop ()

#6 0z000000000041fdb1 in main ()

Processus utilisateur
ooe

Les sources

gdb

Autres commandes

= up/down : déplacement dans la stack d'exécution

Registres gdb
(gdb) info registers

rax Oxfffffffffffffdfc -516

rbx 0x0 0

rex 0x7£0d6900a1bl 139695572951473
rdx 0x0 0

rsi 0x0 0

rdi 0x7£££561480b0 140734637572272
rbp 0x7£££561480£0 0x7£££561480£0
rsp 0x7£££561480e0 0x7£££561480e0
8 0x557£6£251770 94005813909360
r9 0x7£0d6930d9d0 139695576111568
ri0 0x62f 1583

ril 0x246 582

ri2 0x557£6£251590 94005813908880
ri3 0x7f££561481e0 140734637572576
ri4 0x0 [

rib 0x0 [

rip 0x557£6£2516ca 0x557£6£2516ca <loop+27>

Processus utilisateur
ooe

Les sources

gdb

Autres commandes

= up/down : déplacement dans la stack d'exécution

= info registers : affiche les registres

Registres gdb
(gdb) info registers

rax Oxfffffffffffffdfc -516

rbx 0x0 0

rex 0x7£0d6900a1bl 139695572951473
rdx 0x0 0

rsi 0x0 0

rdi 0x7£££561480b0 140734637572272
rbp 0x7£££561480£0 0x7£££561480£0
rsp 0x7£££561480e0 0x7£££561480e0
8 0x557£6£251770 94005813909360
r9 0x7£0d6930d9d0 139695576111568
ri0 0x62f 1583

ril 0x246 582

ri2 0x557£6£251590 94005813908880
ri3 0x7f££561481e0 140734637572576
ri4 0x0 [

rib 0x0 [

rip 0x557£6£2516ca 0x557£6£2516ca <loop+27>

Processus utilisateur
0080

Les sources

gdb

res commandes

= up/down : déplacement dans la stack d'exécution
= info registers : affiche les registres

= info source : Information sur les sources du binaire actuellement analysé.

Information sur les sources

(gdb) info source

Current source file is src.c

Compilation directory is /some/where

Located in /some/where/src.c

Contains 16 lines.

Source language is c.

Producer is GNU C11 7.2.0 -mtune=genmeric -march=x86-64 -g.
Compiled with DWARF 2 debugging format.

Does not include preprocessor macro info.

Processus utilisateur
ooe

Les sources

gdb

Autres commandes

= up/down : déplacement dans la stack d'exécution
= info registers : affiche les registres
= info source : Information sur les sources du binaire actuellement analysé.

= disassemble : affiche le code assembleur d'une fonction

Code assembleur d’une fonction

(gdb) disassemble func
Dump of assembler code for function func:

0x0000557£6£2516af <+0>: push Yrbp

0x0000557£6£2516b0 <+1>: mov Y%rsp,%rbp

0x0000557£6£2516b3 <+4>: sub $0x10,%rsp

0x0000557£6£2516b7 <+8>: movl $0x0,-0x4 (%rbp)

0x0000557£6£2516be <+15>: jmp Ox557£6£2516ca <func+27>

0x0000557£6£2516c0 <+17>: mov $0x3e8,%edi

0x0000557£6£2516c5 <+22>: callq Ox557£6£251580 <test+5>
=> 0x0000557£6£2516ca <+27>: cmpl $0x0,-0x4 (%rbp

0x0000557£6£2516ce <+31>: sete %al

0x0000557£6£2516d1 <+34>: movzbl %al,%eax

0x0000557£6£2516d4 <+37>: mov ‘Yeax,%edi

0x0000557£6£2516d6 <+39>: callq Ox557£6£25169a <print>

0x0000557£6£2516db <+44>: test Yeax,%eax

0x0000557£6£2516dd <+46>: jne Ox557£6£2516c0 <func+i7>

0x0000557£6£2516df <+48>: nop

0x0000557£6£2516e0 <+49>: leaveq

0x0000557£6£2516e1 <+50>: retq

End of assembler dump.

Processus utilisateur
{eJele]]

Les sources

gdb

Un des gros intérét de gdb est qu'il peut analyser ce qu'il s'est passé sur un
processus de facon post-mortem.

Les corefile

Les fichiers core ou corefiles contiennent |'ensemble de la mémoire d'un
processus. Ces fichiers sont générés de différentes facons :

= lorsque le processus a effectué une erreur de segmentation.
= lorsque le processus a effectué une erreur systeme.

= 3 la demande : il est possible de demander au systéme de créer un corefile
a tout moment

Exemple de génération d’un corefile

$ cat /proc/sys/kernel/core_pattern

| /ust/share/apport/apport %p %s %c %P
$ ulimit -c unlimited

$ gcore 21768

Noyau
o

Sommaire

o Noyau
@ Au dela de I'espace utilisateur
@ Logs kernel
@ debugfs
@ Crash
@ Autres outils

Noyau
[Jelelele}
Au dela de I'espace utilisateur

Mais qu'est-ce donc que cette task_struct? ?

(Task_struct

{ Task_struct state
mm
Task struct state thread_info
mm tasks
state thread_info A
mm tasks

thread_info
tasks J

Noyau
[Jelelele}

Au dela de I'espace utilisateur

Mais qu'est-ce donc que cette task_struct? ?

struct task_struct {

/* -1 unrunnable, O runnable, >0 stopped: */

volatile long state;
void *stack;
atomic_t usage; arstack
unsigned int cpu; Pile (Stack)
mmap_base
[
task_struct mm_struct i
struct mm_struct *mm; : —1 - ¥ ETERy MEETE SSgmei
struct mm_struct *active_mm; e Gl Memory descriptorBL Tas (Heap)

/* Per-thread vma caching: */
struct vmacache vmacache;

end data bss segment

start_data data segment
end_code

struct mm_struct {
struct vm_area_struct *mmap; /% list of VMAs */

text segment

unsigned long mmap_base; /* base of mmap area */

unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;

= La task_struct est une représentation d'un processus au sein du noyau

= Elle contient une structure mémoire, la mm__struct dans laquelle le noyau
chargera les différents segments du binaire

= C'est ensuite le scheduler qui se chargera d'organiser le lancement des
différents processus représentés par ces task_struct

Noyau
(o] lelele}

Au dela de I'espace utilisateur

Attention, on s'accroche (bis)

Noyau
[e]e] lele}

Au dela de I'espace utilisateur

Et les syscalls dans le noyau ?

Reprenons notre exemple d'appel a un syscall :

Le code source - Assembleur x86_64

_start

mov $60, %rax
mov $2, %rdi
syscall

= Les syscalls sont définis par architecture
= arch/x86/entry/syscalls/syscall_32.tbl : processeur x86
= arch/x86/entry/syscalls/syscall_64.tbl : processeur x86_64
= arch/arm/tools/syscall.tbl : processeur arm

Noyau
[e]e] lele}

Au dela de I'espace utilisateur

Et les syscalls dans le noyau ?

Reprenons notre exemple d'appel a un syscall :

Le code source - Assembleur x86_64

_start

mov $60, %rax
mov $2, %rdi

syscall
syscall_64.tbl
#
64-bit system call numbers and entry vectors
#

The format is:
<number> <abi> <name> <entry point>

#

The abi is "common", "64" or "z32" for this file.

#

0 common read sys_read

1 common write sys_write
2 common open sys_open
3 common close sys_close

60 common exit sys_exit

Noyau
[e]ele] lo}

Au dela de I'espace utilisateur

L'implémentation des syscalls

Le code déclenché par I'appel a un syscall est déclaré via les macros
DEFINE_SYSCALLn.

n correspond au nombre de paramétres de |'appel systéme.
Dans notre exemple sys_exit n'a qu'un paramétre.
Il est donc défini avec la macro DEFINE_SYSCALLI.

exit.c

SYSCALL_DEFINE1(exit, int, error_code)

do_exit((error_code&0xff)<<8);

Noyau
[e]ele] lo}

Au dela de I'espace utilisateur

L'implémentation des syscalls

exit.c

void __noreturn do_exit(long code)

struct task_struct *tsk = current;
int group_dead;
TASKS_RCU(int tasks_rcu_i);

profile_task_exit(tsk);
kcov_task_exit (tsk);

WARN_ON (blk_needs_flush_plug(tsk));

if (unlikely(in_interrupt()))

panic("Aiee, killing interrupt handler!");
if (unlikely(!tsk->pid))

panic("Attempted to kill the idle task!");

* If do_ezit is called because this processes oopsed, it's possible
* that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
* continuing. Amongst other possible reasoms, this is to prevent
* mm_release()->clear_child_tid() from writing to a user-controlled
* kernel address.
*/

set_fs(USER_DS) ;

ptrace_event (PTRACE_EVENT_EXIT, code);
validate_creds_for_do_exit(tsk);

/%

* We're taking recursive faults here in do_ezit. Safest is to just
* leave this task alome and wait for reboot.

*/

if (unlikely(tsk->flags & PF_EXITING)) {

Noyau
[e]ele]e] }

Au dela de I'espace utilisateur

Les outils...

Noyau

Logs kernel

dmesg

dmesg permet d’'accéder aux messages du noyau.

= Donne les premiéres informations permettant de comprendre un probléme
provenant du noyau.

= Acceés a tous les messages depuis le dernier démarrage de la machine.

= En interne, c'est le fichier /proc/kmsg qui est lu dans un ring buffer.

Noyau

Logs kernel

dmesg

dmesg permet d’'accéder aux messages du noyau.

= Donne les premiéres informations permettant de comprendre un probléme
provenant du noyau.

= Acceés a tous les messages depuis le dernier démarrage de la machine.

= En interne, c'est le fichier /proc/kmsg qui est lu dans un ring buffer.

dmesg
072938] PM: Registering ACPI NVS region [mem Oxbf641000-Oxbf683fff] (274432 bytes)
073006] clocksource: jiffies: mask: Oxffffffff max_cycles: Oxffffffff, max_idle_ns: 7645041785100000 ns
073019] futex hash table entries: 1024 (order: 4, 65536 bytes)
073091] pinctrl core: initialized pinctrl subsystem
073189] RTC time: 7:49:09, date: 11/27/17
073278] NET: Registered protocol family 16
.082796] cpuidle: using governor ladder
.087453] cpuidle: using governor menu
.087462] PCCT header not found.
.087548] ACPI: bus type PCI registered
.087552] acpiphp: ACPI Hot Plug PCI Controller Driver version: 0.5
.087617] PCI: MMCONFIG for domain 0000 [bus 00-ff] at [mem 0xe0000000-Oxefffffff] (base 0xe0000000)
.087623] PCI: not using MMCONFIG
.087626] PCI: Using configuration type 1 for base access
.087744] NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter.

©cooo0oo0oo0o0o0000O00OO0O

= -T : Affiche les timestamps dans un format lisible

= -w : Affiche les nouveaux messages dés leur réception

Noyau

debugfs

Debugfs est ce qu'on appelle un pseudo systéeme de fichiers, il permet d'accéder
aux fonctions dites de debug du noyau.

Accéder & debugfs

mkdir /mnt/debug
mount -t debugfs mome /mnt/debug

Contenu de debugfs
ls /sys/kernel/debug/

acpi intel_powerclamp regulator

bdi iosf_sb sched_features
btrfs kprobes sleep_time
cleancache kvm sunrpc

clk mce suspend_stats
dma_buf mei0 tracing

dri pinctrl usb
dynamic_debug pkg_temp_thermal virtio-ports
extfrag pm_qos wakeup_sources
fault_around_bytes pstate_snb %86

frontswap pwm zswap

gpio ras

hid regmap

De nombreuses possibilités y sont offertes, nous allons uniquement nous
concentrer sur deux d’'entre-elles :

= dynamic_debug

= tracing

Noyau

debugfs

dynamic_debug

Le dynamic_debug est une fonctionnalité du noyau permettant d’activer les
messages de debugging du noyau.

Le fichier dynamic_debug/control permet de lister et de contrdler ces
activations.

de debug activés
auk '83 != "=_"' /sys/kernel/debug/dynamic_debug/control

filename:lineno [module]function flags format

init/main.c:741 [main]initcall_blacklisted =p "initcall %s blacklisted\012"

init/main.c:717 [main]initcall_blacklist =p "blacklisting initcall %s\012"

arch/x86/kernel/cpu/mtrr/main.c:491 [main)mtrr_del_page =p "mtrr: no MTRR for %1x000,%1x000 found\012"
arch/x86/kernel/cpu/mtrr/main.c:399 [mainlmtrr_check =p "mtrr: s : 0x%lx base: 0x%1x\012"
arch/x86/kernel/cpu/mtrr/generic.c:444 [generic]print_mtrr_state "TOM2: %01611x aka %11dM\012"
arch/x86/kernel/cpu/mtrr/generic.c:441 [genericlprint_mtrr_state =p " Ju disabled\012"
arch/x86/kernel/cpu/mtrr/generic.c:439 [genericlprint_mtrr_state =p " %u base %0*X%05X000 mask %0%X%05X000 %s\012"
arch/x86/kernel/cpu/mtrr/generic.c:426 [genericlprint_mtrr_state =p "MTRR variable ranges %sabled:\012"

Activation d’un de debug
echo "func SYSC_init_module +p" >/sys/kernel/debug/dynamic_debug/control
awk '/SYSC_init_module/' /sys/kernel/debug/dynamic_debug/control

kernel/module.c:3604 [module]SYSC_init_module =p "init_module: umod=Y%p, len=/lu, uargs=/p\012"

Une fois activés, ces messages sont consultables via dmesg.

Documentation/admin-guide/dynamic-debug-howto.rst

https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html

Noyau

debugfs

tracing

Le tracing dans le noyau permet de suivre les différentes fonctions activées
pendant une certaine période pour un ou plusieurs processus.

Le principe consiste a définir un ensemble de filtre, de choisir une fonction de
suivi (tracing) et de I'activer.

Le résultat est stocké dans un ringbuffer dans le fichier :

= /sys/kernel/debug/tracing/trace

debugfs

perf

Noyau

La mise en place du tracing étant relativement complexe, I'outil perf permet de
faciliter son utilisation.

= perf list : liste I'ensemble des trace disponibles
= perf record : enregistre une trace
= perf report : affiche le résultat d'une trace précédemment effectuée

Utilisation de perf

cd /tmp
perf record -e ewty:ext_free_inode -a

~C[perf record: Woken up 1 times to write data]

[perf record: Captured and wrote 0.823 MB perf.data (2 samples)]

perf report

Noyau
000000000000
Crash

Crash

Présentation

= Crash est une version améliorée de gdb destinée a faciliter le debugging du
noyau.

= |l se base sur le fichier /proc/kcore ou une copie qui contient la mémoire
du noyau a un instant T

= Permet une analyse post-mortem ou en live d'un probléme ou d'un
mauvais comportement

Noyau
0®@0000000000
Crash

Crash

Pré-requis

Pour pouvoir utiliser crash, il est impératif d'obtenir les symboles de debug du
noyau que |I'on souhaite debugger
= Soit le noyau est compilé par la distribution et il n'y a qu'a installer les
packages :
= linux-image-XXX.YYY-ZZZ-generic-dbgsym (Ubuntu/Debian)
= kernel-debuginfo (RedHat/Fedora/CentOS)
= Soit le noyau a été compilé depuis les sources et il faut recompiler le noyau
avec les symboles de debug :

= apt source linux (Ubuntu/Debian)
= kernel-XXX.YYY .src.rpm (RedHat/Fedora/CentOS
= https://www.kernel.org/

https://www.kernel.org/

Crash

Crash

Kexec/Kdump

Noyau
000000000000

Le challenge est de pouvoir récupérer la mémoire du noyau qui vient de planter.

Kdump est un service qui pre-charge via partir de kexec un noyau et d'un
initrd minimal
La mémoire du noyau de capture doit étre réservée au boot du noyau

= crashkernel=auto
Une fois le service activé, le noyau de capture est prét a étre déclenché et
a procéder a une capture.

Crash

Noyau
000000000000

Crash

Kexec/Kdump

Comment déclencher cette récupération ?

= Via les fichiers contenus dans /proc/sys/kernel/panic*, on définit le
comportement du noyau qui va déclencher un kernel panic
= Pour effectivement déclencher le panic soit :
= Le kernel panic de facon autonome
= Via les magic sysrq
= Via un nmi externe
= Lorsque le noyau se trouve dans cet état, le noyau kdump prend le relais et
déclanche la sauvegarde de la mémoire contenu dans /proc/kcore.

/proc/sys/kernel/panic

s /proc/sys/kernel/panicx
/proc/sys/kernel/panic /proc/sys/kernel/panic_on_oops /proc/sys/kernel/panic_on_warn
/proc/sys/kernel/panic_on_io_nmi /proc/sys/kernel/panic_on_unrecovered_nmi

Noyau
000@00000000

Crash

Crash

Utilisation

crash [noyau corefile]

= Sans argument, crash analyse le systeme en live

= En lui spécifiant le noyau avec ses symboles de debug et un corefile
précédemment généré, on lance une analyse post-mortem

Crash

Crash

Utilisation

Noyau
000@00000000

crash [noyau corefile]

crash

KERNEL:
DUMPFILE:
: 4
: Sun Nov 26 21:28:48 2017

UPTIME:
LOAD AVERAGE:
TASKS:
NODENAME :
RELEASE:
VERSION:
MACHINE:
MEMORY :
PID:
COMMAND :
TASK:
CPU:
STATE:

/usr/lib/debug/boot/vmlinux-4.4.0-97-generic
/proc/kcore

12 days, 16:41:39

1.01, 1.19, 1.14

713

dakoro

4.4.0-97-generic

#120-Ubuntu SMP Tue Sep 19 17:28:18 UTC 2017
x86_64 (3093 Mhz)

6 GB

28479

"crash"

££££8800ad5faa00 [THREAD_INFO: fff£8800799ec000.
0

TASK_RUNNING (ACTIVE)

Noyau
000@00000000

Crash

Crash

Utilisation

crash [noyau corefile]

crash
KERNEL: /usr/1ib/debug/boot/vmlinux-4.4.0-97-generic
DUMPFILE: /proc/kcore
CcPUS: 4
DATE: Sun Nov 26 21:28:48 2017
UPTIME: 12 days, 16:41:39
LOAD AVERAGE: 1.01, 1.19, 1.14
TASKS: 713
NODENAME: dakoro
RELEASE: 4.4.0-97-generic
VERSION: #120-Ubuntu SMP Tue Sep 19 17:28:18 UTC 2017
MACHINE: x86_64 (3093 Mhz)
MEMORY: 6 GB
PID: 28479
COMMAND: "crash”
TASK: ££££8800ad5faa00 [THREAD_INFO: £ff£8800799ec000
CPU: 0
STATE: TASK_RUNNING (ACTIVE)

= Version du noyau .
. = Architecture du processeur
= Date de prise du crash . .
R = Informations sur la tache actuelle
= Nombre de taches

Noyau
0000@0000000
Crash

Lister I'ensemble des taches du systéme

ps [PID | task | commande]

Noyau
0000@0000000

Lister I'ensemble des taches du systéme

ps [PID | task | commande]

ps
PID PPID CPU TASK ST %MEM vsz RSS COMM

[[0 ffffffff81e11500 RU 0.0 [0 [swapper/0.

[[1 ££f£ff8801b7a38e00 RU 0.0 0 0 [swapper/1]

[[2 f££f££8801b7a39c00 RU 0.0 [0 [swapper/2

o 0 3 f£f£f£8801b7a3aa00 RU 0.0 0 0 [swapper/3

1 0 1 ££££8801b79e8000 IN 0.1 185492 4296 systemd
964 1 0 ffff8801b2d79c00 1IN 0.0 44920 1656 avahi-daemon
970 1 1 ffff8801b34e8e00 IN 0.0 26044 184 atd
972 1 0 ffff8801b34e9c00 1IN 0.1 138412 3676 freshclam
974 1 2 fff£f8801b34e8000 1IN 0.0 166456 2012 thermald
990 1 3 ffff8801b53a8e00 1IN 0.0 276204 2268 accounts-daemon
997 1 3 f£f£f£8801b53ab800 IN 0.0 256396 1220 rsyslogd
1009 1 2 ff£f£8800b5£30000 IN 0.0 44332 3204 dbus-daemon
1052 1 1 ffff8800b5£34600 IN 0.0 495104 1020 osspd
1053 1 1 ffff8800b5£35400 IN 0.0 495104 1020 osspd
1054 1 3 ffff8800b5£32a00 IN 0.0 495104 1020 osspd
1055 1 3 ffff8800b5£f36200 IN 0.0 495104 1020 osspd

Noyau
0000@0000000

Lister I'ensemble des taches du systéme

ps [PID | task | commande]

ps
PID PPID CPU TASK ST %MEM VSZ RSS COMM
0 0 0 ffffffff81e11500 RU 0.0 0 0 [swapper/0.
0 0 1 ffff8801b7a38e00 RU 0.0 0 0 [swapper/1]
0 0 2 ffff8801b7a39c00 RU 0.0 0 0 [swapper/2
0 0 3 ffff8801b7a3aa00 RU 0.0 0 0 [swapper/3
1 0 1 ffff8801b79e8000 IN 0.1 185492 4296 systemd
964 1 0 fff£f8801b2d79c00 IN 0.0 44920 1556 avahi-daemon
970 1 1 ffff8801b34e8e00 IN 0.0 26044 184 atd
972 1 0 ffff8801b34e9c00 IN 0.1 138412 3676 freshclam
974 1 2 ffff8801b34e8000 IN 0.0 166456 2012 thermald
990 1 3 ffff8801b53a8e00 IN 0.0 276204 2268 accounts-daemon
997 1 3 ffff8801b53ab800 IN 0.0 256396 1220 rsyslogd
1009 1 2 ffff8800b5£f30000 IN 0.0 44332 3204 dbus-daemon
1052 1 1 ffff8800b5£34600 IN 0.0 495104 1020 osspd
1053 1 1 ffff8800b5£35400 IN 0.0 495104 1020 osspd
1054 1 3 ffff8800b5f32a00 1IN 0.0 495104 1020 osspd
1055 1 3 ffff8800b5£36200 IN 0.0 495104 1020 osspd
= Affichage de PID PPID = Mémoire virtuellement disponible
= Adresse de la task_struct = Mémoire effectivement utilisée

= Status de la tiche = Ligne de commande

Noyau
00000@000000
Crash

Choisir une autre tache

set [PID | task]

= Par défaut I'ensemble des commandes prennent la tiche courante comme
référence

= Pour changer de tache courante, on utilise la commande set

= La sélection de la tache se fait par PID ou par adresse de task_struct

Noyau
00000@000000

Crash

Choisir une autre tache

set [PID | task]

= Par défaut I'ensemble des commandes prennent la tiche courante comme
référence

= Pour changer de tache courante, on utilise la commande set

= La sélection de la tache se fait par PID ou par adresse de task_struct

set

crash> set 1
PID: 1
COMMAND: "systemd"
TASK: ffff8801b79e8000 [THREAD_INFO: ffff8801b79£0000]
CPU: 1
STATE: TASK_INTERRUPTIBLE

Noyau
000000800000
Crash

Afficher la pile d'exécution d'une tache

bt [PID]

= Affiche la pile d'exécution d’'une tache.
= Avec l'option -f affiche le contenu complet de la pile.

= (’est cette fonction qui rend crash incontournable pour comprendre ce
qu'il se passe sur le systéme.

Noyau
000000800000

Crash

Afficher la pile d'exécution d'une tache

bt [PID]

= Affiche la pile d'exécution d’'une tache.
= Avec l'option -f affiche le contenu complet de la pile.

= (’est cette fonction qui rend crash incontournable pour comprendre ce
qu'il se passe sur le systéme.

bt

crash> bt
PID: 1 TASK: ££££8801b79e8000 CPU: O COMMAND: "systemd"
#0 [ffff8801b79f3d40] __schedule at ffffffff8183efce
#1 [ffff8801b79f3d90] schedule at ffffffff8183f6b5
#2 [ffff8801679f3da8] schedule_hrtimeout_range_clock at ffffffff81842ca3
#3 [ffff8801679f3e50] schedule_hrtimeout_range at ffffffff81842cd3
#4 [ffff8801b79f3e60] ep_poll at ffffffff81259c40
#5 [ffff8801b79f3f10] sys_epoll_wait at ffffffff8125af28
#6 [ffff8801b79f3f50] entry_ SYSCALL_64_fastpath at ffffffff818437f2
RIP: 00007f5e7aa689d3 RSP: 00007fff1c6£6470 RFLAGS: 00000293
RAX: ffffffffffffffda RBX: 00005610aabade00 RCX: 00007f5e7aa689d3
RDX: 00000000000000af RSI: 00007fff1c6£6480 RDI: 0000000000000004
RBP: 0000000000000000 R8: 00007fff1c6£6480 R9: 225870c9894£4527
R10: 00000000ffffffff R11: 0000000000000293 R12: 0000000000000000
R13: 00007fff1c6£4810 R14: 00007fff1c6£4820 R15: 00005610a8ad28e3
ORIG_RAX: 00000000000000e8 CS: 0033 SS: 002b

Noyau
000000080000
Crash

Afficher le code assembleur d'une fonction

dis fonction

= Permet de comprendre I'enchainement de la pile d'appel

Noyau
000000080000

Afficher le code assembleur d'une fonction

dis fonction

= Permet de comprendre I'enchainement de la pile d'appel

dis

crash> dis schedule
Oxffffffff8183£f680 <schedule>: callq Oxffffffff818460c0 <ftrace_graph_caller>

Oxffffff££8183685 <schedule+5>: push Y%rbp

Oxffffff££8183686 <schedule+6>: mov Y%gs:0xd400,%rax
Oxffffff££8183168f <schedule+15>: mov Yrsp,%rbp

Oxffffffff8183f692 <schedule+18>: push Yhrbx

Oxf£EEFFF£8183£693 <schedule+19>: mov (%rax),%rdx

OxffEEFFf£8183£696 <schedule+22>: test Yrdx,%rdx

OxffEFfff£8183£699 <schedule+25 je Oxfffffff£8183£6ab <schedule+37>
OxffEEfff£8183£69b <schedule+27>: cmpq $0x0,0x6£0 (%irax)
Oxfffffff£8183f6a3 <schedule+35 je Oxffffff££81836c3 <schedule+67>
Oxfffffff£81836a5 <schedule+37>: mov Y%gs:0x14304,%rbx
Oxffff££££8183f6ae xor Yedi,%edi

OxfEEE££££81836b0 callq Oxffffffff8183ec50 <__schedule>
OxfEff££££81836b5 mov -0x3f£8(Yrbx),%rax
Oxffffffff8183f6bc test $0x8,%al

Oxffffffff8183f6be jne Oxffffffff8183f6ae <schedule+46>
Oxf£EEFFE£8183£6c0 pop Yrbx

OxffEEff£8183£6c1 <schedule+65>: pop Yrbp

Oxffffffff8183f6c2 <schedule+66>: retq

Noyau
000000080000

Afficher le code assembleur d'une fonction

dis fonction

= Permet de comprendre I'enchainement de la pile d'appel

dis

crash> dis schedule
Oxffffffff8183£f680 <schedule>: callq Oxffffffff818460c0 <ftrace_graph_caller>

Oxffffff££8183685 <schedule+5>: push Y%rbp

Oxffffff££8183686 <schedule+6>: mov Y%gs:0xd400,%rax
Oxffffff££8183168f <schedule+15>: mov Yrsp,%rbp

Oxffffffff8183f692 <schedule+18>: push Yhrbx

Oxf£EEFFF£8183£693 <schedule+19>: mov (%rax),%rdx

OxffEEFFf£8183£696 <schedule+22>: test Yrdx,%rdx

OxffEFfff£8183£699 <schedule+25 je Oxfffffff£8183£6ab <schedule+37>
OxffEEfff£8183£69b <schedule+27>: cmpq $0x0,0x6£0 (%irax)
Oxfffffff£8183f6a3 <schedule+35 je Oxffffff££81836c3 <schedule+67>
Oxfffffff£81836a5 <schedule+37>: mov Y%gs:0x14304,%rbx
Oxffff££££8183f6ae xor Yedi,%edi

OxfEEE££££81836b0 callq Oxffffffff8183ec50 <__schedule>
OxfEff££££81836b5 mov -0x3f£8(Yrbx),%rax
Oxffffffff8183f6bc test $0x8,%al

Oxffffffff8183f6be jne Oxffffffff8183f6ae <schedule+46>
Oxf£EEFFE£8183£6c0 pop Yrbx

OxffEEff£8183£6c1 <schedule+65>: pop Yrbp

OxffEffff£8183£6c2 <schedule+66>: retq

= Adresse de l'instruction
= Offset de I'instruction

= Code assembleur

Noyau
000000008000

Crash

Afficher la définition d'un symbole

whatis symbole

= Donne la définition d'une structure
= Donne le type d'un symbole

= Donne le prototype d'une fonction

Noyau
000000008000

Afficher la définition d'un symbole

whatis symbole

= Donne la définition d'une structure
= Donne le type d'un symbole

= Donne le prototype d'une fonction

whatis

crash> whatis struct mm_struct
struct mm_struct {
struct vm_area_struct *mmap;

unsigned long mmap_base;
unsigned long mmap_legacy_base;

unsigned long start_code;
unsigned long end_code;
unsigned long start_data;
unsigned long end_data;
unsigned long start_brk;
unsigned long brk;
unsigned long start_stack;
unsigned long arg_start;
unsigned long arg_end;

struct uprobes_state uprobes_state;
void *bd_addr;
atomic_long_t hugetlb_usage;

}

SIZE: 968

Noyau

000000000800
Crash

Afficher la définition d'un symbole

print[/format] symbole

= Affiche la valeur d'un symbole

= Si /format est spécifié, affiche toutes les valeurs dans ce format (x :
hexadecimal, d :décimal).

= Pour les structures, la commande struct est plus rapide a utiliser

Noyau
000000000800
Crash

Afficher la définition d'un symbole

print[/format] symbole

= Affiche la valeur d'un symbole

= Si /format est spécifié, affiche toutes les valeurs dans ce format (x :
hexadecimal, d :décimal).

= Pour les structures, la commande struct est plus rapide a utiliser

print

crash> print (struct list_head) modules
$11 = {
next = Oxffffffffc09£2508,
prev = Oxffffffffc00052c8
}
crash> print/x modules

$12 = {
next = Oxffffffffc09£2508,
prev = Oxffffffffc00052c8

}

crash> print/d modules

$13 = {
next = -1063312120,
prev = -1073720632

}
crash> print (struct list_head *) modules
$14 = (struct list_head *) Oxffffffffc09£2508

T]-]E BEHTLES

Noyau
000000000080
Crash

Afficher I'aide en ligne d'une commande

help commande

= Affiche I'aide et les options de la commande

Noyau

Afficher I'aide en ligne d'une commande

help commande

000000000080

= Affiche I'aide et les options de la commande

help
NAME
help - get help

SYNOPSIS
help [command | alll] [-<option>]

DESCRIPTION
When entered with no argument, a list of all currently available crash
commands is listed. If a name of a crash command is entered, a man-like
page for the command is displayed. If "all" is entered, help pages
for all commands will be displayed. If neither of the above is entered,
the argument string will be passed on to the gdb help command.

A number of internal debug, statistical, and other dumpfile related
data is available with the following optionms:

-a - alias data
-b - shared buffer data
-B - build data

Noyau
00000000000 e
Crash

Et il y en a encore!!

= foreach

Applique la commande sur I'ensemble des processus passés en argument.
= mod

Manipule les modules externes du noyau.
= kmem

Permet de récupérer les informations sur les structures mémoire du noyau.
= rd

Lit brutalement la mémoire.
= files

Liste les fichiers du processus courant

= net
Manipule les interfaces réseaux.
= gdb
Crash permet d'appeler des fonctions gdb.
= gdb list
Affiche le source d'une fonction.
= gdb set

Manipule la mémoire du noyau (DANGEUREUX!!).

Noyau

Autres outils

Berkley Packet Filter

Les outils BCC basés sur BPF sont les derniers outils de tracing des fonctions
kernel. lls permettent de facon trés efficace de visualiser les fonctions kernel
sollicitées a un instant t.

Noyau

Autres outils

SystemTap

SystémeTap permet de modifier le comportement du noyau en insérant du code
a n'importe quelle adresse.

Modification de modules

= Visualisation de variables et de structures

Question
0

Sommaire

e Question

Question
oe

Questions

	Debugger
	Définitions
	Les différents type d'analyse
	Les différents univers
	Ce que couvre ce cours

	Les instructions
	Introduction
	La compilation
	L'exécution

	Processus utilisateur
	ps, top...
	strace, ltrace
	Les sources
	gdb
	gdb
	gdb
	gdb

	Noyau
	Au delà de l'espace utilisateur
	Logs kernel
	debugfs
	Crash
	Autres outils

	Question

