
Debugger Les instructions Processus utilisateur Noyau Question

Debugging Système et Noyau

Aurélien Cedeyn

École Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise

2017-2018

Debugger Les instructions Processus utilisateur Noyau Question

Sommaire

1 Debugger
Définitions
Les différents type d’analyse
Les différents univers
Ce que couvre ce cours

2 Les instructions

3 Processus utilisateur

4 Noyau

5 Question

Debugger Les instructions Processus utilisateur Noyau Question

Définitions

Définitions

Définition
To search for and eliminate malfunctioning elements or errors in

• Quand doit-on debugger ?
• Une application ne se comporte pas comme elle le devrait
• Les performances du système ne correspondent pas aux attentes
• Problèmes de sécurité
• Plantage du système

• Quels outils ?
• Pour chaque élément du système à observer, il faut choisir le ou les outils

les mieux adaptés à la situation.
• Certains outils sont orientés utilisateur, d’autre système, certains autres font

la jonction entre les deux univers.
• Que chercher ?
• Se poser des questions et faire preuve d’imagination

Debugger Les instructions Processus utilisateur Noyau Question

Définitions

Définitions

Définition
To search for and eliminate malfunctioning elements or errors in

• Quand doit-on debugger ?
• Une application ne se comporte pas comme elle le devrait
• Les performances du système ne correspondent pas aux attentes
• Problèmes de sécurité
• Plantage du système

• Quels outils ?
• Pour chaque élément du système à observer, il faut choisir le ou les outils

les mieux adaptés à la situation.
• Certains outils sont orientés utilisateur, d’autre système, certains autres font

la jonction entre les deux univers.
• Que chercher ?
• Se poser des questions et faire preuve d’imagination

Debugger Les instructions Processus utilisateur Noyau Question

Les différents type d’analyse

Les différents type d’analyse

• Activer, lire et comprendre les messages de log
• Tracer un processus
• Récupérer la pile d’exécution d’un processus
• Analyse la mémoire d’un processus

Debugger Les instructions Processus utilisateur Noyau Question

Les différents univers

Les différents univers

Définition
Au sein du système d’exploitation, on peut distinguer trois univers différents :

• L’espace utilisateur : tout ce qui est lancé par un utilisateur
• L’espace noyau : l’ensemble des composants internes du système

d’exploitation (les drivers, le noyau, les modules...)
• Le matériel : les périphériques, la mémoire, le CPU...

UserSpace
Terminal / Window Manager
Systemd / Init
Code utilisateur

Librairie GNU C (libc)

KernelSpace

Appels systèmes (syscall)
Services noyaux

Modules et drivers noyaux

Hardware
CPU
Mémoire

Périphériques

Debugger Les instructions Processus utilisateur Noyau Question

Les différents univers

Les différents univers

UserSpace et KernelSpace

UserSpace
Terminal / Window Manager
Systemd / Init
Code utilisateur

Librairie GNU C (libc)

KernelSpace

Appels systèmes (syscall)
Services noyaux

Modules et drivers noyaux

Hardware
CPU
Mémoire

Périphériques

Debugger Les instructions Processus utilisateur Noyau Question

Les différents univers

Les différents univers

UserSpace
Terminal / Window Manager
Systemd / Init
Code utilisateur

Librairie GNU C (libc)

KernelSpace

Appels systèmes (syscall)
Services noyaux

Modules et drivers noyaux

Hardware
CPU
Mémoire

Périphériques

Debugger Les instructions Processus utilisateur Noyau Question

Les différents univers

Les différents univers

UserSpace
Terminal / Window Manager
Systemd / Init
Code utilisateur

Librairie GNU C (libc)

KernelSpace

Appels systèmes (syscall)
Services noyaux

Modules et drivers noyaux

Hardware
CPU
Mémoire

Périphériques

L’espace utilisateur accède aux fonctionnalités du noyau exclusivement via les
appels systèmes (syscall).

Debugger Les instructions Processus utilisateur Noyau Question

Les différents univers

Les différents univers

UserSpace
Terminal / Window Manager
Systemd / Init
Code utilisateur

Librairie GNU C (libc)

KernelSpace

Appels systèmes (syscall)
Services noyaux

Modules et drivers noyaux

Hardware
CPU
Mémoire

Périphériques

Via ses drivers, le noyau accède au matériel et les présente à l’espace utilisateur.

Debugger Les instructions Processus utilisateur Noyau Question

Ce que couvre ce cours

Ce que couvre ce cours

• Appréhender la construction d’un fichier binaire et comprendre les
mécanismes en jeux lors de son exécution.

• Explorer les principaux outils disponibles permettant d’approcher le
debugging des processus en espace utilisateur.

• S’initier à la mise en place de système de debugging en espace noyau.

Debugger Les instructions Processus utilisateur Noyau Question

Ce que couvre ce cours

Ce que couvre ce cours

• Appréhender la construction d’un fichier binaire et comprendre les
mécanismes en jeux lors de son exécution.

• Explorer les principaux outils disponibles permettant d’approcher le
debugging des processus en espace utilisateur.

• S’initier à la mise en place de système de debugging en espace noyau.

Debugger Les instructions Processus utilisateur Noyau Question

Ce que couvre ce cours

Ce que couvre ce cours

• Appréhender la construction d’un fichier binaire et comprendre les
mécanismes en jeux lors de son exécution.

• Explorer les principaux outils disponibles permettant d’approcher le
debugging des processus en espace utilisateur.

• S’initier à la mise en place de système de debugging en espace noyau.

Debugger Les instructions Processus utilisateur Noyau Question

Sommaire

1 Debugger

2 Les instructions
Introduction
La compilation
L’exécution

3 Processus utilisateur

4 Noyau

5 Question

Debugger Les instructions Processus utilisateur Noyau Question

Introduction

Introduction
Et si on commençait doucement ?

Avant tout, nous avons besoin de comprendre
un minimum d’instructions Assembleur x86 !

Debugger Les instructions Processus utilisateur Noyau Question

Introduction

Introduction
Et si on commençait doucement ?

Debugger Les instructions Processus utilisateur Noyau Question

Introduction

Introduction
Et si on commençait doucement ?

Les registres
%rax, %rbx, %rcx, %rdx, %rdi, %rsi, %r[8-15]

• %rax : Accumulateur, sert à effectuer des calculs arithmétiques ou à envoyer un paramètre à une
interruption.

• %rbx : Registre auxiliaire de base, sert à effectuer des calculs arithmétiques ou bien des calculs sur les
adresses.

• %rcx Registre auxiliaire (compteur), sert généralement comme compteur dans des boucles.
• %rdx Registre auxiliaire de données, sert à stocker des données destinées à des fonctions.
• %rdi Registre contenant un index de destination : utilisée comme adresse source pour les copies de données
• %rsi Registre contenant un index de source : utilisé comme adresse source pour les copies de données
• %r[8-15] Registres complémentaires

rax (64bits)
eax (32bits)

ax (16 bits)
ah
(8bits)

al
(8bits)

Debugger Les instructions Processus utilisateur Noyau Question

Introduction

Introduction
Et si on commençait doucement ?

Les instructions
mov
mov src, dest

• copie la source (src) vers la destination (dest)
• l’instruction peut-être suffixée par (q,l,w,s,b) et correspond au nombre de

bits à copier (ex : l - long (4 octets))

syscall
syscall

• Instruction d’exécution d’une interruption logicielle.

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Use the source Luke.
$ vim add.c

Le code source - langage C
void main(void){

exit(2);
}

$ vim add.s

Le code source - Assembleur x86_64
.text
.globl _start

_start:
mov $60, %rax
mov $2, %rdi
syscall

• main : fonction principale
du programme

• exit : appel système
• mov $60, rax : numéro de

l’appel système
• mov $2, rdi : paramètre de

l’appel système
• syscall : appel système
• mov $1, eax : numéro de

l’appel système
• mov $2, ebx : paramètre de

l’appel système
• int $0x80 : appel système

Plus d’informations sur l’interface avec les appels systèmes et Linux en
assembleur :
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Use the source Luke.
$ vim add.c

Le code source - langage C
void main(void){

exit(2);
}

$ vim add.s

Le code source - Assembleur x86_64
.text
.globl _start

_start:
mov $60, %rax
mov $2, %rdi
syscall

• main : fonction principale
du programme

• exit : appel système

• mov $60, rax : numéro de
l’appel système

• mov $2, rdi : paramètre de
l’appel système

• syscall : appel système
• mov $1, eax : numéro de

l’appel système
• mov $2, ebx : paramètre de

l’appel système
• int $0x80 : appel système

Plus d’informations sur l’interface avec les appels systèmes et Linux en
assembleur :
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Use the source Luke.
$ vim add.c

Le code source - langage C
void main(void){

exit(2);
}

$ vim add.s

Le code source - Assembleur x86_64
.text
.globl _start

_start:
mov $60, %rax
mov $2, %rdi
syscall

• main : fonction principale
du programme

• exit : appel système

• mov $60, rax : numéro de
l’appel système

• mov $2, rdi : paramètre de
l’appel système

• syscall : appel système

• mov $1, eax : numéro de
l’appel système

• mov $2, ebx : paramètre de
l’appel système

• int $0x80 : appel système

Plus d’informations sur l’interface avec les appels systèmes et Linux en
assembleur :
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Use the source Luke.
$ vim add.c

Le code source - langage C
void main(void){

exit(2);
}

$ vim add.s

Le code source - Assembleur x86_32
.text
.globl _start

_start:
movl $1, %eax
movl $2, %ebx
int $0x80

• main : fonction principale
du programme

• exit : appel système
• mov $60, rax : numéro de

l’appel système
• mov $2, rdi : paramètre de

l’appel système
• syscall : appel système

• mov $1, eax : numéro de
l’appel système

• mov $2, ebx : paramètre de
l’appel système

• int $0x80 : appel système

Plus d’informations sur l’interface avec les appels systèmes et Linux en
assembleur :
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Le compilateur se charge de transformer le code source en code objet binaire.
$ as add.s -o add.o

Le code machine binaire - Compilateur (gcc, as)
add.o: file format elf64-x86-64

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 00000010 0000000000000000 0000000000000000 00000040 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .data 00000000 0000000000000000 0000000000000000 00000050 2**0
CONTENTS, ALLOC, LOAD, DATA

2 .bss 00000000 0000000000000000 0000000000000000 00000050 2**0
ALLOC

Contents of section .text:
0000 48c7c03c 00000048 c7c70200 00000f05 H..<...H........

Disassembly of section .text:

0000000000000000 <.text>:

0: 48 c7 c0 3c 00 00 00 mov $0x3c,%rax
7: 48 c7 c7 02 00 00 00 mov $0x2,%rdi
e: 0f 05 syscall

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Le linker se charge de transformer l’objet binaire obtenu en code exécutable.
$ ld add.o -o add

L’exécutable - Linker (ld)
add: file format elf64-x86-64

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 00000010 0000000000400078 0000000000400078 00000078 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE

Contents of section .text:
400078 48c7c03c 00000048 c7c70200 00000f05 H..<...H........

Disassembly of section .text:

0000000000400078 <.text>:

400078: 48 c7 c0 3c 00 00 00 mov $0x3c,%rax
40007f: 48 c7 c7 02 00 00 00 mov $0x2,%rdi
400086: 0f 05 syscall

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Définition
Une instruction est simplement un ensemble d’octets transmis au processeur.

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Définition
Une instruction est simplement un ensemble d’octets transmis au processeur.

Instruction x86_64 (big indian)
add: file format elf64-x86-64

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 00000010 0000000000400078 0000000000400078 00000078 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE

Contents of section .text:
400078 48c7c03c 00000048 c7c70200 00000f05 H..<...H........

Disassembly of section .text:

0000000000400078 <.text>:

400078: 48 c7 c0 3c 00 00 00 mov $0x3c,%rax
40007f: 48 c7 c7 02 00 00 00 mov $0x2,%rdi
400086: 0f 05 syscall

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Définition
Une instruction est simplement un ensemble d’octets transmis au processeur.

Instructions ARM (little indian)
add.arm: file format elf32-littlearm

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 00000010 00008054 00008054 00000054 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .ARM.attributes 00000014 00000000 00000000 00000064 2**0
CONTENTS, READONLY

Contents of section .text:
8054 0200a0e3 0170a0e3 04002de5 000000efp....-.....

Contents of section .ARM.attributes:
0000 41130000 00616561 62690001 09000000 A....aeabi......
0010 06010801

Disassembly of section .text:

00008054 <_start>:

8054: e3a00002 mov r0, #2
8058: e3a07001 mov r7, #1
805c: e52d0004 push {r0} ; (str r0, [sp, #-4]!)
8060: ef000000 svc 0x00000000

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

Définition
Une instruction est simplement un ensemble d’octets transmis au processeur.

Lecture du fichier binaire
• $ objdump -dsh add.o
• $ xxd add.o

Debugger Les instructions Processus utilisateur Noyau Question

La compilation

Les instructions
Des sources au fichier binaire

https://imgur.com/a/JEObT

https://imgur.com/a/JEObT

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Mise en place en mémoire

text

initialized data

data

uninitialized data

bss

heap

stack

stack (allouée à l’exécution)
La pile contient la pile d’appel des fonctions, leur variables locales et les adresses de
fonctions externes.

heap (allouée à l’exécution)
Le tas : section mémoire utilisée pour allouer les variables dynamiques.

bss (fixé à la compilation)
Block Started by Symbol : Variables globales non initialisées du code.

data (fixé à la compilation)
Variables globales initialisées du code.

text (fixé à la compilation)
Appelée aussi code section : ensemble du code exécutable.

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Mise en place en mémoire

text

initialized data

data

uninitialized data

bss

heap

stack

stack (allouée à l’exécution)
La pile contient la pile d’appel des fonctions, leur variables locales et les adresses de
fonctions externes.

heap (allouée à l’exécution)
Le tas : section mémoire utilisée pour allouer les variables dynamiques.

bss (fixé à la compilation)
Block Started by Symbol : Variables globales non initialisées du code.

data (fixé à la compilation)
Variables globales initialisées du code.

text (fixé à la compilation)
Appelée aussi code section : ensemble du code exécutable.

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Mise en place en mémoire

text

initialized data

data

uninitialized data

bss

heap

stack

stack (allouée à l’exécution)
La pile contient la pile d’appel des fonctions, leur variables locales et les adresses de
fonctions externes.

heap (allouée à l’exécution)
Le tas : section mémoire utilisée pour allouer les variables dynamiques.

bss (fixé à la compilation)
Block Started by Symbol : Variables globales non initialisées du code.

data (fixé à la compilation)
Variables globales initialisées du code.

text (fixé à la compilation)
Appelée aussi code section : ensemble du code exécutable.

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Mise en place en mémoire

text

initialized data

data

uninitialized data

bss

heap

stack

stack (allouée à l’exécution)
La pile contient la pile d’appel des fonctions, leur variables locales et les adresses de
fonctions externes.

heap (allouée à l’exécution)
Le tas : section mémoire utilisée pour allouer les variables dynamiques.

bss (fixé à la compilation)
Block Started by Symbol : Variables globales non initialisées du code.

data (fixé à la compilation)
Variables globales initialisées du code.

text (fixé à la compilation)
Appelée aussi code section : ensemble du code exécutable.

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Mise en place en mémoire

text

initialized data

data

uninitialized data

bss

heap

stack

stack (allouée à l’exécution)
La pile contient la pile d’appel des fonctions, leur variables locales et les adresses de
fonctions externes.

heap (allouée à l’exécution)
Le tas : section mémoire utilisée pour allouer les variables dynamiques.

bss (fixé à la compilation)
Block Started by Symbol : Variables globales non initialisées du code.

data (fixé à la compilation)
Variables globales initialisées du code.

text (fixé à la compilation)
Appelée aussi code section : ensemble du code exécutable.

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Mise en place en mémoire

text

initialized data

data

uninitialized data

bss

heap

stack
stack (allouée à l’exécution)
La pile contient la pile d’appel des fonctions, leur variables locales et les adresses de
fonctions externes.

heap (allouée à l’exécution)
Le tas : section mémoire utilisée pour allouer les variables dynamiques.

bss (fixé à la compilation)
Block Started by Symbol : Variables globales non initialisées du code.

data (fixé à la compilation)
Variables globales initialisées du code.

text (fixé à la compilation)
Appelée aussi code section : ensemble du code exécutable.

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Le déplacement dans la pile

À partir de ce moment nous avons un exécutable avec son code qui est monté
en mémoire à l’exécution.
C’est sur la pile que va se jouer l’exécution des différentes fonctions ainsi que le
passage de leurs paramètres et de leurs valeurs de retour.

Les registres
%rbp
Base Pointer : Adresse de base d’appel de la fonction

%rsp
Stack Pointer : Adresse courante de la pile (stack)

%rip
Instruction Pointer : Adresse de la prochaine instruction

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Le déplacement dans la pile

À partir de ce moment nous avons un exécutable avec son code qui est monté
en mémoire à l’exécution.
C’est sur la pile que va se jouer l’exécution des différentes fonctions ainsi que le
passage de leurs paramètres et de leurs valeurs de retour.

Les instructions
push
Pousse sur la stack le contenu du registre en paramètre.

pop
Récupère la dernière valeur de la stack et place son contenu dans le registre
passé en paramètre.

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Le déplacement dans la pile

À partir de ce moment nous avons un exécutable avec son code qui est monté
en mémoire à l’exécution.
C’est sur la pile que va se jouer l’exécution des différentes fonctions ainsi que le
passage de leurs paramètres et de leurs valeurs de retour.

Les instructions
call
Instruction d’appel de fonction. Elle procède en 2 étapes :

• Sauvegarde de %rip sur la stack
• Déplacement de %rip à l’adresse demandée

ret
Instruction de retour de fonction. Restauration de %rip sur la stack

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

Attention, on s’accroche !

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

On entre dans la fonction main, %rbp est sauvegardé

%rsp Stack
→0xf0 0xff (%rbp)

→

0xe0

→

0xd0

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text
→ 0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C
→ void main(void){

→

test() ;

→

}

→

void test(void){

→

return in_test() ;
}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

On place l’adresse de base de la stack à sa nouvelle valeur

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0

→

0xd0

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp
→ 0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C
→ void main(void){

→

test() ;

→

}

→

void test(void){

→

return in_test() ;
}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Appel de la fonction test, %rip est poussé sur la stack et %rip prend la nouvelle
valeur de la fonction test

%rsp Stack

→

0xf0 0xff (%rbp)
→0xe0 0x09 (main)

→

0xd0

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp
→ 0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){

→

return in_test() ;
}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction test, et même principe que pour la fonction main

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)
→0xd0 0xe0 (%rbp)

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq
→ 0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}
→ void test(void){

→

return in_test() ;
}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction test, et même principe que pour la fonction main

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)

→

0xd0 0xe0 (%rbp)

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp
→ 0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}
→ void test(void){

→

return in_test() ;
}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Appel de la fonction in_test, même manipulation sur %rip

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)

→

0xd0 0xe0 (%rbp)
→0xc0 0x24 (test)

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp
→ 0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){
→ return in_test() ;

}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction in_test

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)

→

0xd0 0xe0 (%rbp)

→

0xc0 0x24 (test)
→0xb0 0xc0 (%rbp)

0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq
→ 0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){
→ return in_test() ;

}
→ void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction in_test

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)

→

0xd0 0xe0 (%rbp)

→

0xc0 0x24 (test)

→

0xb0 0xc0 (%rbp)
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp
→ 0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){
→ return in_test() ;

}
→ void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Entrée dans la fonction in_test

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)

→

0xd0 0xe0 (%rbp)

→

0xc0 0x24 (test)

→

0xb0 0xc0 (%rbp)
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp
→ 0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){
→ return in_test() ;

}

→

void in_test(void){
→ return ;

}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)

→

0xd0 0xe0 (%rbp)

→

0xc0 0x24 (test)

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop
→0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){
→ return in_test() ;

}

→

void in_test(void){
→ return ;

}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)

→

0xd0 0xe0 (%rbp)

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp
→0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){
→ return in_test() ;

}

→

void in_test(void){
→ return ;

}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0 0x09 (main)

→

0xd0

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>
→0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){
→ return in_test() ;

}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0

→

0xd0

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp
→0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){
→ test() ;

→

}

→

void test(void){

→

return in_test() ;
}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0

→

0xd0

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>
→0x09 mov $0x0,%eax

→

0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){

→

test() ;
→ }

→

void test(void){

→

return in_test() ;
}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

L’exécution

L’exécution
Exemple d’exécution dans la stack (pile)

Retour de la fonction, %rbp est restauré et retq restaure %rip

%rsp Stack

→

0xf0 0xff (%rbp)

→

0xe0

→

0xd0

→

0xc0

→

0xb0
0xa0

%rip Assembleur - section text

→

0x01 push %rbp

→

0x02 mov %rsp,%rbp

→

0x05 callq 0x12 <test>

→

0x09 mov $0x0,%eax
→0x0d retq

→

0x12 push %rbp

→

0x13 mov %rsp,%rbp

→

0x1f callq 0x26 <in_test>

→

0x24 pop %rbp

→

0x25 retq

→

0x26 push %rbp

→

0x27 mov %rsp,%rbp

→

0x2a nop

→

0x2b pop %rbp

→

0x2c retq

Code C

→

void main(void){

→

test() ;
→ }

→

void test(void){

→

return in_test() ;
}

→

void in_test(void){

→

return ;
}

Debugger Les instructions Processus utilisateur Noyau Question

Sommaire

1 Debugger

2 Les instructions

3 Processus utilisateur
ps, top...
strace, ltrace
Les sources
gdb
gdb
gdb
gdb

4 Noyau

5 Question

Debugger Les instructions Processus utilisateur Noyau Question

ps, top...

ps, top...

Les deux outils ps et top permettent de consulter la structure mémoire d’un
processus (task_struct).

Debugger Les instructions Processus utilisateur Noyau Question

ps, top...

ps, top...

On consulte la consommation CPU et mémoire de chaque processus, ainsi que
l’état dans lequel il se trouve (en cours d’exécution, stoppé, bloqué, zombie...).

• ps
• permet d’observer un ou plusieurs processus à un instant T
• système de filtrage par utilisateur, PID . . .

• top
• Visualisation en continue des processus les plus actifs du système
• Consultation unifiée de l’uptime de la machine et de l’utilisation de

processeurs
Ces deux outils permettent de consulter la santé du sytème d’exploitation.

Debugger Les instructions Processus utilisateur Noyau Question

ps, top...

Exemple de sortie avec la commande ps
ps aux f

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? S Oct19 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Oct19 0:05 _ [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< Oct19 0:00 _ [kworker/0:0H]
root 7 0.0 0.0 0 0 ? S Oct19 4:58 _ [rcu_sched]
root 8 0.0 0.0 0 0 ? S Oct19 0:00 _ [rcu_bh]
root 9 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/0]
root 10 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/0]
root 11 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/1]
root 12 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/1]
root 13 0.0 0.0 0 0 ? S Oct19 0:02 _ [ksoftirqd/1]
root 15 0.0 0.0 0 0 ? S< Oct19 0:00 _ [kworker/1:0H]
root 16 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/2]
root 17 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/2]
root 18 0.0 0.0 0 0 ? S Oct19 0:02 _ [ksoftirqd/2]

Les différents champs (ps aux f)
• PID : Id du processus
• %CPU : Pourcentage d’occupation CPU
• %MEM : Pourcentage d’occupation Mémoire
• VSZ : Mémoire virtuellement utilisable
• RSS : Mémoire réellement utilisée
• TTY : Terminal attaché au processus
• STAT : Status du processus
• START : Date de début du processus
• TIME : Temps système consommé
• COMMAND : Ligne de commande du processus

Debugger Les instructions Processus utilisateur Noyau Question

ps, top...

Exemple de sortie avec la commande ps
ps aux f

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? S Oct19 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Oct19 0:05 _ [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< Oct19 0:00 _ [kworker/0:0H]
root 7 0.0 0.0 0 0 ? S Oct19 4:58 _ [rcu_sched]
root 8 0.0 0.0 0 0 ? S Oct19 0:00 _ [rcu_bh]
root 9 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/0]
root 10 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/0]
root 11 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/1]
root 12 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/1]
root 13 0.0 0.0 0 0 ? S Oct19 0:02 _ [ksoftirqd/1]
root 15 0.0 0.0 0 0 ? S< Oct19 0:00 _ [kworker/1:0H]
root 16 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/2]
root 17 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/2]
root 18 0.0 0.0 0 0 ? S Oct19 0:02 _ [ksoftirqd/2]

Ensemble des processus noyaux

Debugger Les instructions Processus utilisateur Noyau Question

ps, top...

Exemple de sortie avec la commande ps
ps aux f

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? S Oct19 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Oct19 0:05 _ [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< Oct19 0:00 _ [kworker/0:0H]
root 7 0.0 0.0 0 0 ? S Oct19 4:58 _ [rcu_sched]
root 8 0.0 0.0 0 0 ? S Oct19 0:00 _ [rcu_bh]
root 9 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/0]
root 10 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/0]
root 11 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/1]
root 12 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/1]
root 13 0.0 0.0 0 0 ? S Oct19 0:02 _ [ksoftirqd/1]
root 15 0.0 0.0 0 0 ? S< Oct19 0:00 _ [kworker/1:0H]
root 16 0.0 0.0 0 0 ? S Oct19 0:00 _ [watchdog/2]
root 17 0.0 0.0 0 0 ? S Oct19 0:01 _ [migration/2]
root 18 0.0 0.0 0 0 ? S Oct19 0:02 _ [ksoftirqd/2]

root 1032 0.0 0.0 304632 2956 ? Ssl Oct19 0:06 /usr/lib/snapd/snapd
root 1036 0.0 0.0 274964 1332 ? Ssl Oct19 0:00 /usr/sbin/cups-browsed
root 1046 0.0 0.0 29028 532 ? Ss Oct19 0:00 /usr/sbin/cron -f
root 1048 0.0 0.0 276204 368 ? Ssl Oct19 0:03 /usr/lib/accountsservice/accounts-daemon
root 1050 0.0 0.0 166456 240 ? Ssl Oct19 0:11 /usr/sbin/thermald --no-daemon --dbus-enable
root 1054 0.0 0.0 337360 432 ? Ssl Oct19 0:00 /usr/sbin/ModemManager
root 1056 0.0 0.0 449528 2804 ? Ssl Oct19 0:00 /usr/sbin/NetworkManager --no-daemon
nobody 1316 0.0 0.0 52948 0 ? S Oct19 0:00 _ /usr/sbin/dnsmasq --no-resolv --keep-in-foreground --no-hosts --bind-interfaces --pid-file=/var/run/NetworkManager/dnsmasq.pid --listen-address=127.0.1.1 --cache-size=0 --conf-file=/dev/null --proxy-dnssec --enable-dbus=org.freedesktop.NetworkManager.dnsmasq --conf-dir=/etc/NetworkManager/dnsmasq.d
root 21637 0.0 0.0 16128 92 ? S Oct22 0:00 _ /sbin/dhclient -d -q -sf /usr/lib/NetworkManager/nm-dhcp-helper -pf /var/run/dhclient-eth0.pid -lf /var/lib/NetworkManager/dhclient-cd4a7c13-e039-3827-a685-8c33f8984c69-eth0.lease -cf /var/lib/NetworkManager/dhclient-eth0.conf eth0
root 1176 0.0 0.0 276816 372 ? SLsl Oct19 0:00 /usr/sbin/lightdm

Suivis des processus utilisateurs

Debugger Les instructions Processus utilisateur Noyau Question

ps, top...

Exemple de sortie avec la commande top

top
top - 23:37:03 up 6 days, 1:54, 9 users, load average: 0,29, 0,35, 0,26
Tâches: 260 total, 1 en cours, 258 en veille, 0 arrêté, 1 zombie
%Cpu0 : 1,7 ut, 0,7 sy, 0,0 ni, 97,7 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st
top - 23:37:29 up 6 days, 1:54, 9 users, load average: 0.27, 0.33, 0.26
Tasks: 260 total, 1 running, 258 sleeping, 0 stopped, 1 zombie
%Cpu0 : 3.4 us, 1.1 sy, 0.0 ni, 95.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu1 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 : 1.1 us, 0.0 sy, 0.0 ni, 98.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 : 0.0 us, 1.1 sy, 0.0 ni, 98.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 5831144 total, 410448 free, 3567680 used, 1853016 buff/cache
KiB Swap: 6273020 total, 6043320 free, 229700 used. 1592284 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1231 root 20 0 375884 86940 35752 S 4.5 1.5 56:16.89 Xorg

22000 rachel 20 0 2905836 538740 154532 S 2.2 9.2 4:02.72 firefox
2345 mat 20 0 299152 42664 7084 S 1.1 0.7 82:23.29 awesome
5597 mat 20 0 39028 3432 2796 R 1.1 0.1 0:00.01 top

22103 rachel 20 0 2593304 761204 138880 S 1.1 13.1 6:30.29 Web Content
1 root 20 0 119904 4060 2388 S 0.0 0.1 0:03.34 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.04 kthreadd
3 root 20 0 0 0 0 S 0.0 0.0 0:05.30 ksoftirqd/0
5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H
7 root 20 0 0 0 0 S 0.0 0.0 5:00.94 rcu_sched

Les premières lignes donnent une vue synthétique de l’utilisation de la machine.

Debugger Les instructions Processus utilisateur Noyau Question

ps, top...

Sous le capot

Chacune de ces commandes vont parcourir /proc, un pseudo filesystème dans
lequel on peut trouver les informations de l’ensemble des processus de la
machine.

procfs
$ cat /proc/self/stat
15933 (cat) R 10118 15933 10118 34820 15933 4194304 88 0 0 0 0 0 0 0 20 0 1 0 30568230 7647232 193 3121741824

4194304 4240236 140732349587456 140732349586808 140640986640944 0 0 128 0 0 0 0 17 0 0 0 0 0 0 6340112 6341364
36347904 140732349592700 140732349592720 140732349592720 140732349595631 0

↪→
↪→

D’autres informations sont également disponible dans procfs et sont lus par
d’autre outils.

procfs
$ ls /proc/self/
attr clear_refs cpuset fd limits mem net oom_score projid_map

sessionid stat task↪→
autogroup cmdline cwd fdinfo loginuid mountinfo ns oom_score_adj root

setgroups statm timers↪→
auxv comm environ gid_map map_files mounts numa_maps pagemap sched smaps

status uid_map↪→
cgroup coredump_filter exe io maps mountstats oom_adj personality schedstat stack

syscall wchan↪→

Debugger Les instructions Processus utilisateur Noyau Question

strace, ltrace

strace

L’outil strace permet de voir l’ensemble des appels systèmes effectués par un
processus. Les appels systèmes sont également appelés syscall et correspondent
aux fonctions exposées par le noyau vers l’espace utilisateur.

Exemple d’utilisation de strace
strace -e open,getdents ls
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libpcre.so.3", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libdl.so.2", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3
open("/proc/filesystems", O_RDONLY) = 3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
getdents(3, /* 2 entries */, 32768) = 48
getdents(3, /* 0 entries */, 32768) = 0
+++ exited with 0 +++

strace est utilisé pour comprendre comment un processus en espace utilisateur
inter-agit avec le noyau via les appels systèmes.

syscall - int 0x80

Debugger Les instructions Processus utilisateur Noyau Question

strace, ltrace

strace

L’outil strace permet de voir l’ensemble des appels systèmes effectués par un
processus. Les appels systèmes sont également appelés syscall et correspondent
aux fonctions exposées par le noyau vers l’espace utilisateur.

Exemple d’utilisation de strace
strace -e open,getdents ls
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libpcre.so.3", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libdl.so.2", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3
open("/proc/filesystems", O_RDONLY) = 3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
getdents(3, /* 2 entries */, 32768) = 48
getdents(3, /* 0 entries */, 32768) = 0
+++ exited with 0 +++

strace est utilisé pour comprendre comment un processus en espace utilisateur
inter-agit avec le noyau via les appels systèmes.

syscall - int 0x80

Debugger Les instructions Processus utilisateur Noyau Question

strace, ltrace

strace les options intéressantes

Ne sélectionner que certains appels : -e
strace -e open,getdents ls
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libpcre.so.3", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libdl.so.2", O_RDONLY|O_CLOEXEC) = 3
open("/lib/x86_64-linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3
open("/proc/filesystems", O_RDONLY) = 3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
getdents(3, /* 2 entries */, 32768) = 48
getdents(3, /* 0 entries */, 32768) = 0
+++ exited with 0 +++

Debugger Les instructions Processus utilisateur Noyau Question

strace, ltrace

strace les options intéressantes

Voir le temps passé dans chaque appel : -tt
22:42:17.942028 execve("/bin/ls", ["ls"], [/* 50 vars */]) = 0
22:42:17.942537 brk(NULL) = 0xb60000
22:42:17.942644 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
22:42:17.942774 mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f978836f000
22:42:17.942834 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
22:42:17.942883 open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
22:42:17.942928 fstat(3, {st_mode=S_IFREG|0644, st_size=251122, ...}) = 0
22:42:17.942969 mmap(NULL, 251122, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f9788331000
22:42:17.943007 close(3) = 0
22:42:17.943045 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
22:42:17.943096 open("/lib/x86_64-linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
22:42:17.943136 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\260Z\0\0\0\0\0\0"..., 832) = 832
22:42:17.943177 fstat(3, {st_mode=S_IFREG|0644, st_size=130224, ...}) = 0
22:42:17.943215 mmap(NULL, 2234080, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f9787f2a000
22:42:17.943255 mprotect(0x7f9787f49000, 2093056, PROT_NONE) = 0
22:42:17.943297 mmap(0x7f9788148000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1e000) =

0x7f9788148000↪→
22:42:17.943346 mmap(0x7f978814a000, 5856, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) =

0x7f978814a000↪→
22:42:17.943390 close(3) = 0
22:42:17.943429 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
22:42:17.943473 open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
22:42:17.943513 read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\t\2\0\0\0\0\0"..., 832) = 832
22:42:17.943550 fstat(3, {st_mode=S_IFREG|0755, st_size=1868984, ...}) = 0
22:42:17.943588 mmap(NULL, 3971488, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f9787b60000
22:42:17.943657 mprotect(0x7f9787d20000, 2097152, PROT_NONE) = 0
22:42:17.943707 mmap(0x7f9787f20000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c0000)

= 0x7f9787f20000↪→

Debugger Les instructions Processus utilisateur Noyau Question

strace, ltrace

strace les options intéressantes

Voir le nombre d’appel utilisés : -c
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

0.00 0.000000 0 7 read
0.00 0.000000 0 1 write
0.00 0.000000 0 8 open
0.00 0.000000 0 10 close
0.00 0.000000 0 9 fstat
0.00 0.000000 0 18 mmap
0.00 0.000000 0 12 mprotect
0.00 0.000000 0 1 munmap
0.00 0.000000 0 3 brk
0.00 0.000000 0 2 rt_sigaction
0.00 0.000000 0 1 rt_sigprocmask
0.00 0.000000 0 2 ioctl
0.00 0.000000 0 7 7 access
0.00 0.000000 0 1 execve
0.00 0.000000 0 2 getdents
0.00 0.000000 0 1 getrlimit
0.00 0.000000 0 2 2 statfs
0.00 0.000000 0 1 arch_prctl
0.00 0.000000 0 1 set_tid_address
0.00 0.000000 0 1 set_robust_list

------ ----------- ----------- --------- --------- ----------------
100.00 0.000000 90 9 total

Debugger Les instructions Processus utilisateur Noyau Question

strace, ltrace

strace les options intéressantes

S’attacher à un processus existant : -p
strace: Process 26546 attached
epoll_wait(4, [{EPOLLIN, {u32=7, u64=4294967303}}], 64, 59743) = 1
recvmsg(7, {msg_name(0)=NULL,

msg_iov(1)=[{"\34\0\327\255\240\4\0\0003\1\0\0`M\373\24\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 4096}],
msg_controllen=0, msg_flags=0}, 0) = 32

↪→
↪→
recvmsg(7, 0x7ffc1169d900, 0) = -1 EAGAIN (Resource temporarily unavailable)
recvmsg(7, 0x7ffc1169d900, 0) = -1 EAGAIN (Resource temporarily unavailable)
epoll_wait(4, [{EPOLLIN, {u32=7, u64=4294967303}}], 64, 59743) = 1
recvmsg(7, {msg_name(0)=NULL,

msg_iov(1)=[{"\34\0\327\255\240\4\0\0004\1\0\0bM\373\24\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 4096}],
msg_controllen=0, msg_flags=0}, 0) = 160

↪→
↪→
recvmsg(7, 0x7ffc1169d900, 0) = -1 EAGAIN (Resource temporarily unavailable)
recvmsg(7, 0x7ffc1169d7c0, 0) = -1 EAGAIN (Resource temporarily unavailable)
recvmsg(7, 0x7ffc1169d7c0, 0) = -1 EAGAIN (Resource temporarily unavailable)
poll([{fd=7, events=POLLIN|POLLOUT}], 1, -1) = 1 ([{fd=7, revents=POLLOUT}])
writev(7, [{"\f\32\7\0\24\0`\1\17\0`\1\0\0\0\0\20\0\0\0J\5\0\0\324\2\0\0\f\27\7\0"..., 56}, {NULL, 0}, {"", 0}], 3)

= 56↪→
recvmsg(7, {msg_name(0)=NULL,

msg_iov(1)=[{"\26\0\330\255\24\0`\1\24\0`\1\16\0`\1\0\0\20\0J\5\324\2\0\0\0\0\0\0\0\0"..., 4096}],
msg_controllen=0, msg_flags=0}, 0) = 64

↪→
↪→
recvmsg(7, 0x7ffc1169d900, 0) = -1 EAGAIN (Resource temporarily unavailable)
recvmsg(7, 0x7ffc1169d7c0, 0) = -1 EAGAIN (Resource temporarily unavailable)
recvmsg(7, 0x7ffc1169d7c0, 0) = -1 EAGAIN (Resource temporarily unavailable)
poll([{fd=7, events=POLLIN|POLLOUT}], 1, -1) = 1 ([{fd=7, revents=POLLOUT}])
writev(7, [{"(\32\4\0\24\0`\1\240\4\0\0\0\0\0\0", 16}, {NULL, 0}, {"", 0}], 3) = 16
poll([{fd=7, events=POLLIN}], 1, -1) = 1 ([{fd=7, revents=POLLIN}])
recvmsg(7, {msg_name(0)=NULL, msg_iov(1)=[{"\1\1\332\255\0\0\0\0Z\0\200\0\2\0$\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",

4096}], msg_controllen=0, msg_flags=0}, 0) = 32↪→

Debugger Les instructions Processus utilisateur Noyau Question

strace, ltrace

ltrace

L’outil ltrace permet de voir l’ensemble des appels à la libc. Les informations
fournies ici correspondent aux différentes fonctions appelées dans les librairies
du système. Les appels systèmes ne sont pas visibles.

ltrace -e opendir -e readdir ls
ltrace -e opendir -e readdir ls
ls->opendir(".") = 0xf6bca0
ls->readdir(0xf6bca0) = 0xf6bcd0
ls->readdir(0xf6bca0) = 0xf6bce8
ls->readdir(0xf6bca0) = 0
+++ exited (status 0) +++

ltrace est utilisé pour comprendre le comportement d’un processus utilisateur
en dehors des appels système.

Les options
ltrace possède les mêmes options que strace :

• -e : selection des fonctions à observer
• -tt : temps passé dans chaque fonction
• -c : nombre d’appel utilisé pour chaque fonction
• -p : PID sur lequel s’attacher

• -S : affiche également les appels systèmes

Debugger Les instructions Processus utilisateur Noyau Question

strace, ltrace

ltrace

L’outil ltrace permet de voir l’ensemble des appels à la libc. Les informations
fournies ici correspondent aux différentes fonctions appelées dans les librairies
du système. Les appels systèmes ne sont pas visibles.

ltrace -e opendir -e readdir ls
ltrace -e opendir -e readdir ls
ls->opendir(".") = 0xf6bca0
ls->readdir(0xf6bca0) = 0xf6bcd0
ls->readdir(0xf6bca0) = 0xf6bce8
ls->readdir(0xf6bca0) = 0
+++ exited (status 0) +++

ltrace est utilisé pour comprendre le comportement d’un processus utilisateur
en dehors des appels système.

Les options
ltrace possède les mêmes options que strace :

• -e : selection des fonctions à observer
• -tt : temps passé dans chaque fonction
• -c : nombre d’appel utilisé pour chaque fonction
• -p : PID sur lequel s’attacher
• -S : affiche également les appels systèmes

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

Les sources

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

Les sources

Le point fondamental permettant de debugger efficacement est d’avoir accès
aux sources. Qu’il s’agisse du noyau ou d’un autre programme, les sources
facilitent grandement la compréhension d’un problème.

Pour avoir un environnement de debugging complet, il faut :
• La version du logiciel à debugger
• Les sources correspondantes
• Les symboles de debug : fournis par la distribution ou à compiler soi-même

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

Les sources

Les sources du noyau sont très importantes et volumineuses, rechercher dans le
code source une définition de fonction ou un symbole particulier peut s’avérer
très compliqué.

Pour nous faciliter la tâche, l’outil cscope permet de naviguer facilement dans
un gros projet écrit en C.

• Le noyau supporte directement l’indexation de cscope : make cscope
• cscope -d -R

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

Les sources

cscope
Global definition: task_struct

File Line
0 profile.h 66 struct task_struct;
1 regset.h 20 struct task_struct;
2 regset.h 39 typedef int user_regset_active_fn(struct task_struct *target,
3 regset.h 58 typedef int user_regset_get_fn(struct task_struct *target,
4 regset.h 79 typedef int user_regset_set_fn(struct task_struct *target,
5 regset.h 105 typedef int user_regset_writeback_fn(struct task_struct *target,
6 resource.h 7 struct task_struct;
7 sched.h 483 struct task_struct {
8 autogroup.h 5 struct task_struct;
9 debug.h 8 struct task_struct;
a jobctl.h 6 struct task_struct;
...
* Press the space bar to display the first lines again *

Find this C symbol:
Find this global definition: task_struct
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Find assignments to this symbol:

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

gdb est l’outil par excellence de debug. Il permet d’inspecter le comportement
et le contenu d’un exécutable.

• Permet de lancer l’exécution d’un programme pas à pas (breakpoints)
• Visualise les différentes variables des fonctions en cours
• Affiche la pile d’exécution
• Affiche les registres
• Peut aussi modifier le comportement du programme (en modifiant des

variables par exemple)
Il existe 2 modes de lancement pour gdb

Mode classique au lancement de l’exécutable
gdb <exécutable> [paramètres de l’exécutable]

Mode attachement à un processus en cours
gdb -p <PID>

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Les commandes principales
• break <ligne> : place un point d’arrêt dans le code

• run <args> : lance l’exécutable avec les arguments spécifiés
• where : affiche la pile d’appel d’exécution

Exemple d’utilisation de gdb
(gdb) break opendir
Breakpoint 1 at 0x7ffff78b3140: file ../sysdeps/posix/opendir.c, line 181.
(gdb) run /
Starting program: /bin/ls /
[Thread debugging using libthread_db enabled]
Using host libthread_db library ``/lib/x86_64-linux-gnu/libthread_db.so.1''.

Breakpoint 1, _{opendir (name=0x625cc0 ``/'') at ../sysdeps/posix/opendir.c:182
182 ../sysdeps/posix/opendir.c: Aucun fichier ou dossier de ce type.
(gdb) where
#0 _{opendir (name=0x625cc0 ``/'') at ../sysdeps/posix/opendir.c:182

↪→
#1 0x0000000000403849 in ?? (
#2 0x00007ffff780b830 in _{libc_start_main (main=0x402a00, argc=2,

argv=0x7fffffffe118, init=<optimized out>, fini=<optimized out>,
rtld_fini=<optimized out>, stack_end=0x7fffffffe108)
at ../csu/libc-start.c:291
#3 0x00000000004049c9 in ?? ()})}}

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Les commandes principales
• break <ligne> : place un point d’arrêt dans le code
• run <args> : lance l’exécutable avec les arguments spécifiés

• where : affiche la pile d’appel d’exécution

Exemple d’utilisation de gdb
(gdb) break opendir
Breakpoint 1 at 0x7ffff78b3140: file ../sysdeps/posix/opendir.c, line 181.
(gdb) run /
Starting program: /bin/ls /
[Thread debugging using libthread_db enabled]
Using host libthread_db library ``/lib/x86_64-linux-gnu/libthread_db.so.1''.

Breakpoint 1, _{opendir (name=0x625cc0 ``/'') at ../sysdeps/posix/opendir.c:182
182 ../sysdeps/posix/opendir.c: Aucun fichier ou dossier de ce type.
(gdb) where
#0 _{opendir (name=0x625cc0 ``/'') at ../sysdeps/posix/opendir.c:182

↪→
#1 0x0000000000403849 in ?? (
#2 0x00007ffff780b830 in _{libc_start_main (main=0x402a00, argc=2,

argv=0x7fffffffe118, init=<optimized out>, fini=<optimized out>,
rtld_fini=<optimized out>, stack_end=0x7fffffffe108)
at ../csu/libc-start.c:291
#3 0x00000000004049c9 in ?? ()})}}

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Les commandes principales
• break <ligne> : place un point d’arrêt dans le code
• run <args> : lance l’exécutable avec les arguments spécifiés
• where : affiche la pile d’appel d’exécution

Exemple d’utilisation de gdb
(gdb) break opendir
Breakpoint 1 at 0x7ffff78b3140: file ../sysdeps/posix/opendir.c, line 181.
(gdb) run /
Starting program: /bin/ls /
[Thread debugging using libthread_db enabled]
Using host libthread_db library ``/lib/x86_64-linux-gnu/libthread_db.so.1''.

Breakpoint 1, _{opendir (name=0x625cc0 ``/'') at ../sysdeps/posix/opendir.c:182
182 ../sysdeps/posix/opendir.c: Aucun fichier ou dossier de ce type.
(gdb) where
#0 _{opendir (name=0x625cc0 ``/'') at ../sysdeps/posix/opendir.c:182

↪→
#1 0x0000000000403849 in ?? (
#2 0x00007ffff780b830 in _{libc_start_main (main=0x402a00, argc=2,

argv=0x7fffffffe118, init=<optimized out>, fini=<optimized out>,
rtld_fini=<optimized out>, stack_end=0x7fffffffe108)
at ../csu/libc-start.c:291
#3 0x00000000004049c9 in ?? ()})}}

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Les commandes principales
• break <ligne> : place un point d’arrêt dans le code
• run <args> : lance l’exécutable avec les arguments spécifiés
• where : affiche la pile d’appel d’exécution

Exemple de backtrace de tous les threads d’un processus utilisateur
(gdb) thread apply all where

Thread 1 (LWP 20141):
#0 0x00007fd16877807a in __GI___waitpid (pid=-1, stat_loc=0x7fffbce8c220, options=10) at

../sysdeps/unix/sysv/linux/waitpid.c:29↪→
#1 0x000000000044706d in ?? ()
#2 0x000000000044854b in wait_for ()
#3 0x00000000004384bf in execute_command_internal ()
#4 0x000000000043851e in execute_command ()
#5 0x000000000042139e in reader_loop ()
#6 0x000000000041fdb1 in main ()

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Autres commandes
• up/down : déplacement dans la stack d’exécution

• info registers : affiche les registres
• info source : Information sur les sources du binaire actuellement analysé.
• disassemble : affiche le code assembleur d’une fonction

Registres gdb
(gdb) info registers
rax 0xfffffffffffffdfc -516
rbx 0x0 0
rcx 0x7f0d6900a1b1 139695572951473
rdx 0x0 0
rsi 0x0 0
rdi 0x7fff561480b0 140734637572272
rbp 0x7fff561480f0 0x7fff561480f0
rsp 0x7fff561480e0 0x7fff561480e0
r8 0x557f6f251770 94005813909360
r9 0x7f0d6930d9d0 139695576111568
r10 0x62f 1583
r11 0x246 582
r12 0x557f6f251590 94005813908880
r13 0x7fff561481e0 140734637572576
r14 0x0 0
r15 0x0 0
rip 0x557f6f2516ca 0x557f6f2516ca <loop+27>
...

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Autres commandes
• up/down : déplacement dans la stack d’exécution
• info registers : affiche les registres

• info source : Information sur les sources du binaire actuellement analysé.
• disassemble : affiche le code assembleur d’une fonction

Registres gdb
(gdb) info registers
rax 0xfffffffffffffdfc -516
rbx 0x0 0
rcx 0x7f0d6900a1b1 139695572951473
rdx 0x0 0
rsi 0x0 0
rdi 0x7fff561480b0 140734637572272
rbp 0x7fff561480f0 0x7fff561480f0
rsp 0x7fff561480e0 0x7fff561480e0
r8 0x557f6f251770 94005813909360
r9 0x7f0d6930d9d0 139695576111568
r10 0x62f 1583
r11 0x246 582
r12 0x557f6f251590 94005813908880
r13 0x7fff561481e0 140734637572576
r14 0x0 0
r15 0x0 0
rip 0x557f6f2516ca 0x557f6f2516ca <loop+27>
...

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Autres commandes
• up/down : déplacement dans la stack d’exécution
• info registers : affiche les registres
• info source : Information sur les sources du binaire actuellement analysé.

• disassemble : affiche le code assembleur d’une fonction

Information sur les sources
(gdb) info source
Current source file is src.c
Compilation directory is /some/where
Located in /some/where/src.c
Contains 16 lines.
Source language is c.
Producer is GNU C11 7.2.0 -mtune=generic -march=x86-64 -g.
Compiled with DWARF 2 debugging format.
Does not include preprocessor macro info.

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Autres commandes
• up/down : déplacement dans la stack d’exécution
• info registers : affiche les registres
• info source : Information sur les sources du binaire actuellement analysé.
• disassemble : affiche le code assembleur d’une fonction

Code assembleur d’une fonction
(gdb) disassemble func
Dump of assembler code for function func:

0x0000557f6f2516af <+0>: push %rbp
0x0000557f6f2516b0 <+1>: mov %rsp,%rbp
0x0000557f6f2516b3 <+4>: sub $0x10,%rsp
0x0000557f6f2516b7 <+8>: movl $0x0,-0x4(%rbp)
0x0000557f6f2516be <+15>: jmp 0x557f6f2516ca <func+27>
0x0000557f6f2516c0 <+17>: mov $0x3e8,%edi
0x0000557f6f2516c5 <+22>: callq 0x557f6f251580 <test+5>

=> 0x0000557f6f2516ca <+27>: cmpl $0x0,-0x4(%rbp)
0x0000557f6f2516ce <+31>: sete %al
0x0000557f6f2516d1 <+34>: movzbl %al,%eax
0x0000557f6f2516d4 <+37>: mov %eax,%edi
0x0000557f6f2516d6 <+39>: callq 0x557f6f25169a <print>
0x0000557f6f2516db <+44>: test %eax,%eax
0x0000557f6f2516dd <+46>: jne 0x557f6f2516c0 <func+17>
0x0000557f6f2516df <+48>: nop
0x0000557f6f2516e0 <+49>: leaveq
0x0000557f6f2516e1 <+50>: retq

End of assembler dump.

Debugger Les instructions Processus utilisateur Noyau Question

Les sources

gdb

Un des gros intérêt de gdb est qu’il peut analyser ce qu’il s’est passé sur un
processus de façon post-mortem.

Les corefile
Les fichiers core ou corefiles contiennent l’ensemble de la mémoire d’un
processus. Ces fichiers sont générés de différentes façons :

• lorsque le processus a effectué une erreur de segmentation.
• lorsque le processus a effectué une erreur système.
• à la demande : il est possible de demander au système de créer un corefile

à tout moment

Exemple de génération d’un corefile
$ cat /proc/sys/kernel/core_pattern
|/usr/share/apport/apport %p %s %c %P
$ ulimit -c unlimited
$ gcore 21768

Debugger Les instructions Processus utilisateur Noyau Question

Sommaire

1 Debugger

2 Les instructions

3 Processus utilisateur

4 Noyau
Au delà de l’espace utilisateur
Logs kernel
debugfs
Crash
Autres outils

5 Question

Debugger Les instructions Processus utilisateur Noyau Question

Au delà de l’espace utilisateur

Mais qu’est-ce donc que cette task_struct ? ?

Task_struct

state
mm

thread_info
tasks

Task_struct

state
mm

thread_info
tasks

Task_struct

state
mm

thread_info
tasks

Debugger Les instructions Processus utilisateur Noyau Question

Au delà de l’espace utilisateur

Mais qu’est-ce donc que cette task_struct ? ?

struct task_struct {
...

/* -1 unrunnable, 0 runnable, >0 stopped: */
volatile long state;
void *stack;
atomic_t usage;

...
unsigned int cpu;

...

struct mm_struct *mm;
struct mm_struct *active_mm;

/* Per-thread vma caching: */
struct vmacache vmacache;

struct mm_struct {
struct vm_area_struct *mmap; /* list of VMAs */

...
unsigned long mmap_base; /* base of mmap area */

...
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;

...
};

task_struct

Process descriptor

mm_struct

Memory descriptor

Pile (Stack)

Memory mapping segment

Tas (Heap)

bss segment

data segment

text segment
start_code

end_code
start_data

end_data

start_brk

start_stack

mmap_base

brk

• La task_struct est une représentation d’un processus au sein du noyau
• Elle contient une structure mémoire, la mm_struct dans laquelle le noyau

chargera les différents segments du binaire
• C’est ensuite le scheduler qui se chargera d’organiser le lancement des

différents processus représentés par ces task_struct

Debugger Les instructions Processus utilisateur Noyau Question

Au delà de l’espace utilisateur

Attention, on s’accroche (bis)

Debugger Les instructions Processus utilisateur Noyau Question

Au delà de l’espace utilisateur

Et les syscalls dans le noyau ?

Reprenons notre exemple d’appel à un syscall :

Le code source - Assembleur x86_64
.text
.globl _start

_start:
mov $60, %rax
mov $2, %rdi
syscall

• Les syscalls sont définis par architecture
• arch/x86/entry/syscalls/syscall_32.tbl : processeur x86
• arch/x86/entry/syscalls/syscall_64.tbl : processeur x86_64
• arch/arm/tools/syscall.tbl : processeur arm

Debugger Les instructions Processus utilisateur Noyau Question

Au delà de l’espace utilisateur

Et les syscalls dans le noyau ?

Reprenons notre exemple d’appel à un syscall :

Le code source - Assembleur x86_64
.text
.globl _start

_start:
mov $60, %rax
mov $2, %rdi
syscall

syscall_64.tbl
#
64-bit system call numbers and entry vectors
#
The format is:
<number> <abi> <name> <entry point>
#
The abi is "common", "64" or "x32" for this file.
#
0 common read sys_read
1 common write sys_write
2 common open sys_open
3 common close sys_close
...
60 common exit sys_exit
...

Debugger Les instructions Processus utilisateur Noyau Question

Au delà de l’espace utilisateur

L’implémentation des syscalls

• Le code déclenché par l’appel à un syscall est déclaré via les macros
DEFINE_SYSCALLn.

• n correspond au nombre de paramètres de l’appel système.
• Dans notre exemple sys_exit n’a qu’un paramètre.
• Il est donc défini avec la macro DEFINE_SYSCALL1.

exit.c
SYSCALL_DEFINE1(exit, int, error_code)
{

do_exit((error_code&0xff)<<8);
}

Debugger Les instructions Processus utilisateur Noyau Question

Au delà de l’espace utilisateur

L’implémentation des syscalls

exit.c
void __noreturn do_exit(long code)
{

struct task_struct *tsk = current;
int group_dead;
TASKS_RCU(int tasks_rcu_i);

profile_task_exit(tsk);
kcov_task_exit(tsk);

WARN_ON(blk_needs_flush_plug(tsk));

if (unlikely(in_interrupt()))
panic("Aiee, killing interrupt handler!");

if (unlikely(!tsk->pid))
panic("Attempted to kill the idle task!");

/*
* If do_exit is called because this processes oopsed, it's possible
* that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
* continuing. Amongst other possible reasons, this is to prevent
* mm_release()->clear_child_tid() from writing to a user-controlled
* kernel address.
*/

set_fs(USER_DS);

ptrace_event(PTRACE_EVENT_EXIT, code);

validate_creds_for_do_exit(tsk);

/*
* We're taking recursive faults here in do_exit. Safest is to just
* leave this task alone and wait for reboot.
*/

if (unlikely(tsk->flags & PF_EXITING)) {

Debugger Les instructions Processus utilisateur Noyau Question

Au delà de l’espace utilisateur

Les outils...

Debugger Les instructions Processus utilisateur Noyau Question

Logs kernel

dmesg
dmesg permet d’accéder aux messages du noyau.

• Donne les premières informations permettant de comprendre un problème
provenant du noyau.

• Accès à tous les messages depuis le dernier démarrage de la machine.
• En interne, c’est le fichier /proc/kmsg qui est lu dans un ring buffer.

Debugger Les instructions Processus utilisateur Noyau Question

Logs kernel

dmesg
dmesg permet d’accéder aux messages du noyau.

• Donne les premières informations permettant de comprendre un problème
provenant du noyau.

• Accès à tous les messages depuis le dernier démarrage de la machine.
• En interne, c’est le fichier /proc/kmsg qui est lu dans un ring buffer.

dmesg
[0.072938] PM: Registering ACPI NVS region [mem 0xbf641000-0xbf683fff] (274432 bytes)
[0.073006] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 7645041785100000 ns
[0.073019] futex hash table entries: 1024 (order: 4, 65536 bytes)
[0.073091] pinctrl core: initialized pinctrl subsystem
[0.073189] RTC time: 7:49:09, date: 11/27/17
[0.073278] NET: Registered protocol family 16
[0.082796] cpuidle: using governor ladder
[0.087453] cpuidle: using governor menu
[0.087462] PCCT header not found.
[0.087548] ACPI: bus type PCI registered
[0.087552] acpiphp: ACPI Hot Plug PCI Controller Driver version: 0.5
[0.087617] PCI: MMCONFIG for domain 0000 [bus 00-ff] at [mem 0xe0000000-0xefffffff] (base 0xe0000000)
[0.087623] PCI: not using MMCONFIG
[0.087626] PCI: Using configuration type 1 for base access
[0.087744] NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter.

• -T : Affiche les timestamps dans un format lisible
• -w : Affiche les nouveaux messages dès leur réception

Debugger Les instructions Processus utilisateur Noyau Question

debugfs

Debugfs

Debugfs est ce qu’on appelle un pseudo système de fichiers, il permet d’accéder
aux fonctions dites de debug du noyau.

Accéder à debugfs
mkdir /mnt/debug
mount -t debugfs none /mnt/debug

Contenu de debugfs
ls /sys/kernel/debug/
acpi intel_powerclamp regulator
bdi iosf_sb sched_features
btrfs kprobes sleep_time
cleancache kvm sunrpc
clk mce suspend_stats
dma_buf mei0 tracing
dri pinctrl usb
dynamic_debug pkg_temp_thermal virtio-ports
extfrag pm_qos wakeup_sources
fault_around_bytes pstate_snb x86
frontswap pwm zswap
gpio ras
hid regmap

De nombreuses possibilités y sont offertes, nous allons uniquement nous
concentrer sur deux d’entre-elles :

• dynamic_debug
• tracing

Debugger Les instructions Processus utilisateur Noyau Question

debugfs

dynamic_debug

Le dynamic_debug est une fonctionnalité du noyau permettant d’activer les
messages de debugging du noyau.
Le fichier dynamic_debug/control permet de lister et de contrôler ces
activations.

Messages de debug activés
awk '$3 != "=_"' /sys/kernel/debug/dynamic_debug/control
filename:lineno [module]function flags format
init/main.c:741 [main]initcall_blacklisted =p "initcall %s blacklisted\012"
init/main.c:717 [main]initcall_blacklist =p "blacklisting initcall %s\012"
arch/x86/kernel/cpu/mtrr/main.c:491 [main]mtrr_del_page =p "mtrr: no MTRR for %lx000,%lx000 found\012"
arch/x86/kernel/cpu/mtrr/main.c:399 [main]mtrr_check =p "mtrr: size: 0x%lx base: 0x%lx\012"
arch/x86/kernel/cpu/mtrr/generic.c:444 [generic]print_mtrr_state =p "TOM2: %016llx aka %lldM\012"
arch/x86/kernel/cpu/mtrr/generic.c:441 [generic]print_mtrr_state =p " %u disabled\012"
arch/x86/kernel/cpu/mtrr/generic.c:439 [generic]print_mtrr_state =p " %u base %0*X%05X000 mask %0*X%05X000 %s\012"
arch/x86/kernel/cpu/mtrr/generic.c:426 [generic]print_mtrr_state =p "MTRR variable ranges %sabled:\012"

Activation d’un message de debug
echo "func SYSC_init_module +p" >/sys/kernel/debug/dynamic_debug/control
awk '/SYSC_init_module/' /sys/kernel/debug/dynamic_debug/control
kernel/module.c:3604 [module]SYSC_init_module =p "init_module: umod=%p, len=%lu, uargs=%p\012"

Une fois activés, ces messages sont consultables via dmesg.

Documentation/admin-guide/dynamic-debug-howto.rst

https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html

Debugger Les instructions Processus utilisateur Noyau Question

debugfs

tracing

Le tracing dans le noyau permet de suivre les différentes fonctions activées
pendant une certaine période pour un ou plusieurs processus.
Le principe consiste à définir un ensemble de filtre, de choisir une fonction de
suivi (tracing) et de l’activer.
Le résultat est stocké dans un ringbuffer dans le fichier :

• /sys/kernel/debug/tracing/trace

Debugger Les instructions Processus utilisateur Noyau Question

debugfs

perf

La mise en place du tracing étant relativement complexe, l’outil perf permet de
faciliter son utilisation.

• perf list : liste l’ensemble des trace disponibles
• perf record : enregistre une trace
• perf report : affiche le résultat d’une trace précédemment effectuée

Utilisation de perf
cd /tmp
perf record -e ext4:ext4_free_inode -a
^C[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.823 MB perf.data (2 samples)]

perf report

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Crash
Présentation

• Crash est une version améliorée de gdb destinée à faciliter le debugging du
noyau.

• Il se base sur le fichier /proc/kcore ou une copie qui contient la mémoire
du noyau à un instant T

• Permet une analyse post-mortem ou en live d’un problème ou d’un
mauvais comportement

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Crash
Pré-requis

Pour pouvoir utiliser crash, il est impératif d’obtenir les symboles de debug du
noyau que l’on souhaite debugger

• Soit le noyau est compilé par la distribution et il n’y a qu’à installer les
packages :

• linux-image-XXX.YYY-ZZZ-generic-dbgsym (Ubuntu/Debian)
• kernel-debuginfo (RedHat/Fedora/CentOS)
• ...

• Soit le noyau a été compilé depuis les sources et il faut recompiler le noyau
avec les symboles de debug :

• apt source linux (Ubuntu/Debian)
• kernel-XXX.YYY.src.rpm (RedHat/Fedora/CentOS
• https://www.kernel.org/

https://www.kernel.org/

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Crash
Kexec/Kdump

Le challenge est de pouvoir récupérer la mémoire du noyau qui vient de planter.
• Kdump est un service qui pre-charge via partir de kexec un noyau et d’un

initrd minimal
• La mémoire du noyau de capture doit être réservée au boot du noyau

• crashkernel=auto
• Une fois le service activé, le noyau de capture est prêt à être déclenché et

à procéder à une capture.

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Crash
Kexec/Kdump

Comment déclencher cette récupération ?
• Via les fichiers contenus dans /proc/sys/kernel/panic*, on définit le

comportement du noyau qui va déclencher un kernel panic
• Pour effectivement déclencher le panic soit :

• Le kernel panic de façon autonome
• Via les magic sysrq
• Via un nmi externe

• Lorsque le noyau se trouve dans cet état, le noyau kdump prend le relais et
déclanche la sauvegarde de la mémoire contenu dans /proc/kcore.

/proc/sys/kernel/panic
ls /proc/sys/kernel/panic*
/proc/sys/kernel/panic /proc/sys/kernel/panic_on_oops /proc/sys/kernel/panic_on_warn
/proc/sys/kernel/panic_on_io_nmi /proc/sys/kernel/panic_on_unrecovered_nmi

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Crash
Utilisation

Lancement
crash [noyau corefile]

• Sans argument, crash analyse le système en live
• En lui spécifiant le noyau avec ses symboles de debug et un corefile

précédemment généré, on lance une analyse post-mortem

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Crash
Utilisation

Lancement
crash [noyau corefile]

crash
KERNEL: /usr/lib/debug/boot/vmlinux-4.4.0-97-generic

DUMPFILE: /proc/kcore
CPUS: 4
DATE: Sun Nov 26 21:28:48 2017

UPTIME: 12 days, 16:41:39
LOAD AVERAGE: 1.01, 1.19, 1.14

TASKS: 713
NODENAME: dakoro
RELEASE: 4.4.0-97-generic
VERSION: #120-Ubuntu SMP Tue Sep 19 17:28:18 UTC 2017
MACHINE: x86_64 (3093 Mhz)
MEMORY: 6 GB

PID: 28479
COMMAND: "crash"

TASK: ffff8800ad5faa00 [THREAD_INFO: ffff8800799ec000]
CPU: 0

STATE: TASK_RUNNING (ACTIVE)

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Crash
Utilisation

Lancement
crash [noyau corefile]

crash
KERNEL: /usr/lib/debug/boot/vmlinux-4.4.0-97-generic

DUMPFILE: /proc/kcore
CPUS: 4
DATE: Sun Nov 26 21:28:48 2017

UPTIME: 12 days, 16:41:39
LOAD AVERAGE: 1.01, 1.19, 1.14

TASKS: 713
NODENAME: dakoro
RELEASE: 4.4.0-97-generic
VERSION: #120-Ubuntu SMP Tue Sep 19 17:28:18 UTC 2017
MACHINE: x86_64 (3093 Mhz)
MEMORY: 6 GB

PID: 28479
COMMAND: "crash"

TASK: ffff8800ad5faa00 [THREAD_INFO: ffff8800799ec000]
CPU: 0

STATE: TASK_RUNNING (ACTIVE)

• Version du noyau
• Date de prise du crash
• Nombre de tâches

• Architecture du processeur
• Informations sur la tâche actuelle

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Lister l’ensemble des tâches du système
ps [PID | task | commande]

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Lister l’ensemble des tâches du système
ps [PID | task | commande]

ps
PID PPID CPU TASK ST %MEM VSZ RSS COMM

0 0 0 ffffffff81e11500 RU 0.0 0 0 [swapper/0]
0 0 1 ffff8801b7a38e00 RU 0.0 0 0 [swapper/1]
0 0 2 ffff8801b7a39c00 RU 0.0 0 0 [swapper/2]
0 0 3 ffff8801b7a3aa00 RU 0.0 0 0 [swapper/3]
1 0 1 ffff8801b79e8000 IN 0.1 185492 4296 systemd

...
964 1 0 ffff8801b2d79c00 IN 0.0 44920 1556 avahi-daemon
970 1 1 ffff8801b34e8e00 IN 0.0 26044 184 atd
972 1 0 ffff8801b34e9c00 IN 0.1 138412 3676 freshclam
974 1 2 ffff8801b34e8000 IN 0.0 166456 2012 thermald
990 1 3 ffff8801b53a8e00 IN 0.0 276204 2268 accounts-daemon
997 1 3 ffff8801b53ab800 IN 0.0 256396 1220 rsyslogd

1009 1 2 ffff8800b5f30000 IN 0.0 44332 3204 dbus-daemon
1052 1 1 ffff8800b5f34600 IN 0.0 495104 1020 osspd
1053 1 1 ffff8800b5f35400 IN 0.0 495104 1020 osspd
1054 1 3 ffff8800b5f32a00 IN 0.0 495104 1020 osspd
1055 1 3 ffff8800b5f36200 IN 0.0 495104 1020 osspd

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Lister l’ensemble des tâches du système
ps [PID | task | commande]

ps
PID PPID CPU TASK ST %MEM VSZ RSS COMM

0 0 0 ffffffff81e11500 RU 0.0 0 0 [swapper/0]
0 0 1 ffff8801b7a38e00 RU 0.0 0 0 [swapper/1]
0 0 2 ffff8801b7a39c00 RU 0.0 0 0 [swapper/2]
0 0 3 ffff8801b7a3aa00 RU 0.0 0 0 [swapper/3]
1 0 1 ffff8801b79e8000 IN 0.1 185492 4296 systemd

...
964 1 0 ffff8801b2d79c00 IN 0.0 44920 1556 avahi-daemon
970 1 1 ffff8801b34e8e00 IN 0.0 26044 184 atd
972 1 0 ffff8801b34e9c00 IN 0.1 138412 3676 freshclam
974 1 2 ffff8801b34e8000 IN 0.0 166456 2012 thermald
990 1 3 ffff8801b53a8e00 IN 0.0 276204 2268 accounts-daemon
997 1 3 ffff8801b53ab800 IN 0.0 256396 1220 rsyslogd

1009 1 2 ffff8800b5f30000 IN 0.0 44332 3204 dbus-daemon
1052 1 1 ffff8800b5f34600 IN 0.0 495104 1020 osspd
1053 1 1 ffff8800b5f35400 IN 0.0 495104 1020 osspd
1054 1 3 ffff8800b5f32a00 IN 0.0 495104 1020 osspd
1055 1 3 ffff8800b5f36200 IN 0.0 495104 1020 osspd

• Affichage de PID PPID
• Adresse de la task_struct
• Status de la tâche

• Mémoire virtuellement disponible
• Mémoire effectivement utilisée
• Ligne de commande

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Choisir une autre tâche
set [PID | task]

• Par défaut l’ensemble des commandes prennent la tâche courante comme
référence

• Pour changer de tâche courante, on utilise la commande set
• La sélection de la tâche se fait par PID ou par adresse de task_struct

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Choisir une autre tâche
set [PID | task]

• Par défaut l’ensemble des commandes prennent la tâche courante comme
référence

• Pour changer de tâche courante, on utilise la commande set
• La sélection de la tâche se fait par PID ou par adresse de task_struct

set
crash> set 1

PID: 1
COMMAND: "systemd"

TASK: ffff8801b79e8000 [THREAD_INFO: ffff8801b79f0000]
CPU: 1

STATE: TASK_INTERRUPTIBLE

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher la pile d’exécution d’une tâche
bt [PID]

• Affiche la pile d’exécution d’une tâche.
• Avec l’option -f affiche le contenu complet de la pile.
• C’est cette fonction qui rend crash incontournable pour comprendre ce

qu’il se passe sur le système.

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher la pile d’exécution d’une tâche
bt [PID]

• Affiche la pile d’exécution d’une tâche.
• Avec l’option -f affiche le contenu complet de la pile.
• C’est cette fonction qui rend crash incontournable pour comprendre ce

qu’il se passe sur le système.
bt

crash> bt
PID: 1 TASK: ffff8801b79e8000 CPU: 0 COMMAND: "systemd"
#0 [ffff8801b79f3d40] __schedule at ffffffff8183efce
#1 [ffff8801b79f3d90] schedule at ffffffff8183f6b5
#2 [ffff8801b79f3da8] schedule_hrtimeout_range_clock at ffffffff81842ca3
#3 [ffff8801b79f3e50] schedule_hrtimeout_range at ffffffff81842cd3
#4 [ffff8801b79f3e60] ep_poll at ffffffff81259c40
#5 [ffff8801b79f3f10] sys_epoll_wait at ffffffff8125af28
#6 [ffff8801b79f3f50] entry_SYSCALL_64_fastpath at ffffffff818437f2

RIP: 00007f5e7aa689d3 RSP: 00007fff1c6f6470 RFLAGS: 00000293
RAX: ffffffffffffffda RBX: 00005610aabade00 RCX: 00007f5e7aa689d3
RDX: 00000000000000af RSI: 00007fff1c6f6480 RDI: 0000000000000004
RBP: 0000000000000000 R8: 00007fff1c6f6480 R9: 225870c9894f4527
R10: 00000000ffffffff R11: 0000000000000293 R12: 0000000000000000
R13: 00007fff1c6f4810 R14: 00007fff1c6f4820 R15: 00005610a8ad28e3
ORIG_RAX: 00000000000000e8 CS: 0033 SS: 002b

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher le code assembleur d’une fonction
dis fonction

• Permet de comprendre l’enchaînement de la pile d’appel

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher le code assembleur d’une fonction
dis fonction

• Permet de comprendre l’enchaînement de la pile d’appel
dis

crash> dis schedule
0xffffffff8183f680 <schedule>: callq 0xffffffff818460c0 <ftrace_graph_caller>
0xffffffff8183f685 <schedule+5>: push %rbp
0xffffffff8183f686 <schedule+6>: mov %gs:0xd400,%rax
0xffffffff8183f68f <schedule+15>: mov %rsp,%rbp
0xffffffff8183f692 <schedule+18>: push %rbx
0xffffffff8183f693 <schedule+19>: mov (%rax),%rdx
0xffffffff8183f696 <schedule+22>: test %rdx,%rdx
0xffffffff8183f699 <schedule+25>: je 0xffffffff8183f6a5 <schedule+37>
0xffffffff8183f69b <schedule+27>: cmpq $0x0,0x6f0(%rax)
0xffffffff8183f6a3 <schedule+35>: je 0xffffffff8183f6c3 <schedule+67>
0xffffffff8183f6a5 <schedule+37>: mov %gs:0x14304,%rbx
0xffffffff8183f6ae <schedule+46>: xor %edi,%edi
0xffffffff8183f6b0 <schedule+48>: callq 0xffffffff8183ec50 <__schedule>
0xffffffff8183f6b5 <schedule+53>: mov -0x3ff8(%rbx),%rax
0xffffffff8183f6bc <schedule+60>: test $0x8,%al
0xffffffff8183f6be <schedule+62>: jne 0xffffffff8183f6ae <schedule+46>
0xffffffff8183f6c0 <schedule+64>: pop %rbx
0xffffffff8183f6c1 <schedule+65>: pop %rbp
0xffffffff8183f6c2 <schedule+66>: retq

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher le code assembleur d’une fonction
dis fonction

• Permet de comprendre l’enchaînement de la pile d’appel
dis

crash> dis schedule
0xffffffff8183f680 <schedule>: callq 0xffffffff818460c0 <ftrace_graph_caller>
0xffffffff8183f685 <schedule+5>: push %rbp
0xffffffff8183f686 <schedule+6>: mov %gs:0xd400,%rax
0xffffffff8183f68f <schedule+15>: mov %rsp,%rbp
0xffffffff8183f692 <schedule+18>: push %rbx
0xffffffff8183f693 <schedule+19>: mov (%rax),%rdx
0xffffffff8183f696 <schedule+22>: test %rdx,%rdx
0xffffffff8183f699 <schedule+25>: je 0xffffffff8183f6a5 <schedule+37>
0xffffffff8183f69b <schedule+27>: cmpq $0x0,0x6f0(%rax)
0xffffffff8183f6a3 <schedule+35>: je 0xffffffff8183f6c3 <schedule+67>
0xffffffff8183f6a5 <schedule+37>: mov %gs:0x14304,%rbx
0xffffffff8183f6ae <schedule+46>: xor %edi,%edi
0xffffffff8183f6b0 <schedule+48>: callq 0xffffffff8183ec50 <__schedule>
0xffffffff8183f6b5 <schedule+53>: mov -0x3ff8(%rbx),%rax
0xffffffff8183f6bc <schedule+60>: test $0x8,%al
0xffffffff8183f6be <schedule+62>: jne 0xffffffff8183f6ae <schedule+46>
0xffffffff8183f6c0 <schedule+64>: pop %rbx
0xffffffff8183f6c1 <schedule+65>: pop %rbp
0xffffffff8183f6c2 <schedule+66>: retq

• Adresse de l’instruction
• Offset de l’instruction
• Code assembleur

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher la définition d’un symbole
whatis symbole

• Donne la définition d’une structure
• Donne le type d’un symbole
• Donne le prototype d’une fonction

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher la définition d’un symbole
whatis symbole

• Donne la définition d’une structure
• Donne le type d’un symbole
• Donne le prototype d’une fonction

whatis
crash> whatis struct mm_struct
struct mm_struct {

struct vm_area_struct *mmap;
...

unsigned long mmap_base;
unsigned long mmap_legacy_base;

...
unsigned long start_code;
unsigned long end_code;
unsigned long start_data;
unsigned long end_data;
unsigned long start_brk;
unsigned long brk;
unsigned long start_stack;
unsigned long arg_start;
unsigned long arg_end;

...
struct uprobes_state uprobes_state;
void *bd_addr;
atomic_long_t hugetlb_usage;

}
SIZE: 968

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher la définition d’un symbole
print[/format] symbole

• Affiche la valeur d’un symbole
• Si /format est spécifié, affiche toutes les valeurs dans ce format (x :

hexadecimal, d :décimal).
• Pour les structures, la commande struct est plus rapide à utiliser

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher la définition d’un symbole
print[/format] symbole

• Affiche la valeur d’un symbole
• Si /format est spécifié, affiche toutes les valeurs dans ce format (x :

hexadecimal, d :décimal).
• Pour les structures, la commande struct est plus rapide à utiliser

print
crash> print (struct list_head) modules
$11 = {

next = 0xffffffffc09f2508,
prev = 0xffffffffc00052c8

}
crash> print/x modules
$12 = {

next = 0xffffffffc09f2508,
prev = 0xffffffffc00052c8

}
crash> print/d modules
$13 = {

next = -1063312120,
prev = -1073720632

}
crash> print (struct list_head *) modules
$14 = (struct list_head *) 0xffffffffc09f2508

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher l’aide en ligne d’une commande
help commande

• Affiche l’aide et les options de la commande

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Afficher l’aide en ligne d’une commande
help commande

• Affiche l’aide et les options de la commande
help

NAME
help - get help

SYNOPSIS
help [command | all] [-<option>]

DESCRIPTION
When entered with no argument, a list of all currently available crash
commands is listed. If a name of a crash command is entered, a man-like
page for the command is displayed. If "all" is entered, help pages
for all commands will be displayed. If neither of the above is entered,
the argument string will be passed on to the gdb help command.

A number of internal debug, statistical, and other dumpfile related
data is available with the following options:

-a - alias data
-b - shared buffer data
-B - build data

...

Debugger Les instructions Processus utilisateur Noyau Question

Crash

Et il y en a encore ! !

• foreach
Applique la commande sur l’ensemble des processus passés en argument.

• mod
Manipule les modules externes du noyau.

• kmem
Permet de récupérer les informations sur les structures mémoire du noyau.

• rd
Lit brutalement la mémoire.

• files
Liste les fichiers du processus courant

• net
Manipule les interfaces réseaux.

• gdb
Crash permet d’appeler des fonctions gdb.

• gdb list
Affiche le source d’une fonction.

• gdb set
Manipule la mémoire du noyau (DANGEUREUX ! !).

Debugger Les instructions Processus utilisateur Noyau Question

Autres outils

Berkley Packet Filter

Les outils BCC basés sur BPF sont les derniers outils de tracing des fonctions
kernel. Ils permettent de façon très efficace de visualiser les fonctions kernel
sollicitées à un instant t.

Debugger Les instructions Processus utilisateur Noyau Question

Autres outils

SystemTap

SystèmeTap permet de modifier le comportement du noyau en insérant du code
à n’importe quelle adresse.

• Modification de modules
• Visualisation de variables et de structures
• ...

Debugger Les instructions Processus utilisateur Noyau Question

Sommaire

1 Debugger

2 Les instructions

3 Processus utilisateur

4 Noyau

5 Question

Debugger Les instructions Processus utilisateur Noyau Question

Questions

	Debugger
	Définitions
	Les différents type d'analyse
	Les différents univers
	Ce que couvre ce cours

	Les instructions
	Introduction
	La compilation
	L'exécution

	Processus utilisateur
	ps, top...
	strace, ltrace
	Les sources
	gdb
	gdb
	gdb
	gdb

	Noyau
	Au delà de l'espace utilisateur
	Logs kernel
	debugfs
	Crash
	Autres outils

	Question

