
Architecture d’un système

d’exploitation:

Allocation mémoire

Basé sur le cours de Marc

Tchiboukdjian et les travaux de

recherche de Sébastien Valat

Bibliographie

• La programmation sous UNIX de Jean-Marie

Rifflet

• Système d’exploitation d’Andrew Tanenbaum

• What Every Programmer Should Know About

Memory de Ulrich Drepper

• Contribution à l'amélioration des méthodes

d'optimisation de la gestion de la mémoire

dans le cadre du Calcul Haute Performance de

Sébastien Valat

• Framework de R&D

http://mpc.hpcframework.com

http://mpc.hpcframework.com/

Déroulement du cours

• Allocation mémoire en espace noyau

• Allocation mémoire en espace utilisateur

• Allocation mémoire en contexte HPC

Allocation mémoire en espace

noyau

La programmation sous UNIX de Jean-

Marie Rifflet

Système d’exploitation d’Andrew

Tanenbaum

Mémoire physique

● Un tableau de cases ou cellules mémoire

●

●

●

Chaque case : un nombre défini de bits

Chaque case a un numéro : une adresse

Mot mémoire : information contenue dans une case

● RAM pour Random Access Memory

● Taille sur un système actuel : de quelques Go (téléphone
portable) à 1 To (un nœud d'un super-calculateur)

Mémoire physique

4 Nehalem EX
processors

CPU 0 CPU 1

CPU 2 CPU 3

Noeud NUMA 0

Barrette mémoire 0-1

Barrette mémoire 0-0

Noeud NUMA 3

Barrette mémoire 3-1

Barrette mémoire 3-0

Noeud NUMA 2

Barrette mémoire 2-1

Barrette mémoire 2-0

Noeud NUMA 1

Barrette mémoire 1-1

Barrette mémoire 1-0

Mémoire vue par le programmeur

●

●

Espace d'adressage logique

Code du programme

● Stocké dans la zone texte

● Variables allouées statiquement

●

●

Stockées dans la zone donnée

Durée de vie du programme

● Variables allouées automatiquement

●

●

Stockées dans la pile (stack)

Durée de vie liée à la fonction ou à un bloc

● Variables allouées manuellement

●

●

●

Stockées dans le tas (heap)

En C avec malloc/free

Durée de vie gérée par le programmeur

Non utilisé

ZONE TEXTE

ZONE DONNEE

TAS

PILE

ZONE U

Variables statiques et automatiques

● Variables statiques (ou globales)

●

●

Durée de vie du programme

En C :

–

–

variable globale (déclarée à l'extérieure de toute fonction)

variable préfixée par le mot clé static

● Variables automatiques (ou locales)

●

●

Durée de vie associée à leur portée (fonction ou
bloc)

En C : variable locale

Mémoire vue par le programmeur

● Code et les données sont chargées en
mémoire juste avec l'exécution du
programme par le loader

● La pile est gérée

●

●

En C : par le compilateur

En Assembleur : par le programmeur

● Le tas est géré par le programmeur

●

●

Interface : malloc/free

Implémentation : libc (allocateur mémoire)

Non utilisé

ZONE TEXTE

ZONE DONNEE

TAS

PILE

ZONE U

Malloc/Free
● Utilisation

●

●

●

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

● Fait partie de l'espace utilisateur

●

●

●

L'implémentation de l'allocateur mémoire fait des appels systèmes

Groupe plusieurs appels à malloc (rapide) en un seul appel système (plus lent)

brk/sbrk : augmente la taille du tas

mmap : récupère de l'espace mémoire (libc : pour les grosses allocations)

● Critique pour les performances de certains codes (C,C++)

●

●

Parallélisme (plusieurs threads appellent malloc), Localité (NUMA)

D'autres implémentations que la libc existent (ex : Google TCMalloc)

Malloc/Free : problème de la
fragmentation mémoire

● Après une série de malloc/free, la mémoire est
fragmentée en parties utilisées et parties libérées

● Implémentation de l'allocateur mémoire

● Choix de la zone où placer une nouvelle allocation

– First fit / Best fit / Worse fit

● Compromis performance / consommation mémoire

Tas

Problèmes posés par
les adresses logiques

● Espace d'adresses logiques = abstraction de la mémoire

●

●

Simple pour le programmeur

Comment l'implémenter ?

● La mémoire logique est plus grande que la mémoire
physique. Comment fait on si on a moins de 2⁶⁴ bits de
mémoire ? (cas usuel)

● Multiprogrammation : plusieurs processus s'exécutent
en « même temps »

●

●

Problème 1 : ils veulent utiliser la même adresse

Problème 2 :  mémoires processus > mémoire principale

Solution : la mémoire virtuelle

● Mémoire physique et mémoire logique sont
découpées en utilisant la même taille de zone

●

●

●

Mémoire physique : en frames

Mémoire logique : en pages

Taille usuelle : 4KO (huge page 2MO)

● Adresse logique = un numéro de page + un
déplacement

63

adresse

12 11 0

déplacement numéro de page

La mémoire virtuelle

Mémoire physique découpée en frames

0 1 2 3 4 997 998 999

0 1 2 3 4 5 6 7 8 9 10

espace mémoire inutilisé

Mémoire logique découpée en pages

La correspondance entre les pages et les frames est stockée dans la table des pages

Mémoire vue par
le système d'exploitation

Vue du
processeur

Vue du
programmeur

Vue du
système

d'exploitation

Espace

d'adressage

physique

...

0 haut

Espaces

d'adressage logique

C

o

d

e

S G
t l

a & o

t b

i a

c l

P

I

l

e

T

a

s

C

o

d

e

S G
t l

a & o

t b

i a

c l

P

I

l

e

T

a

s

C

o

d

e

S G
t l

a & o

t b

i a

c l

P

I

l

e

T

a

s
...

C

o

d

e

S G
t l

a & o

t b

i a

c l

P

i

l

e

T

a

s

Gestion des frames et des pages

● Table des frames

●

●

●

Une case par frame

Libre ou allouée

Si allouée, information sur le processus et la page

● Table des pages

●

●

Par processus

Fait partie de son contexte

Traduction des adresses logiques
en adresses physiques :

la table des pages

Implémentation de la table des
pages système

● Registre de table de pages

●

●

●

Table des pages en mémoire centrale

Un registre contient l'adresse de la table

Implique des accès mémoire lors de la traduction
des adresses (lent)

● Mémoire cache dédiée

● TLB : Translation Look-aside Buffer

TLB : mémoire associative

● Mémoire associative : recherche très rapide en parallèle

●

●

Si le numéro de page est dans le TLB, on récupère le
numéro de frame : très rapide car pas d'accès mémoire

Sinon, récupérer le numéro dans la table des pages : lent
car accès mémoire

Page # Frame #

Implémentation de la table des
pages système avec TLB

Fichier d'échange / Swap

● Que faire si le nombre de pages utilisés par tous les
processus est supérieur au nombre de frames (taille
de la mémoire physique) ?

● Les pages supplémentaires sont stockées sur le
disque dans une partition spécifique ou un fichier :
le swap

● Si #pages x 4 KO > taille(mémoire physique + swap),
le système d'exploitation tue un processus qui
consomme beaucoup de mémoire

Fichier d'échange / Swap

●

●

●

Les processus ne sont chargés que
partiellement

Les pages non chargées sont stockées sur le
disque

Le chargement est paresseux (lazy) : une page
est chargée lors du premier accès à une
adresse contenue dans la page

Fichier d'échange / Swap

● Référence de page

●

●

●

Invalide

Page en mémoire :
on continue l'exécution

Page sur disque :
défaut de page
(page fault)

–

–

On charge la page en
mémoire

Si pas de place,
remplacement de page

Bit de validité

●

●

Comment déterminer si la page est en mémoire
ou sur disque ?

On rajoute un bit de validité dans la table des
pages

●

●

Si le bit de validité est à 1, la page est en
mémoire à l'emplacement de la frame

Si le bit de validité est à 0, la page est sur le
disque : déclenchement d'un défaut de page

Bit de validité

Gestion des défauts de page

Gestion des défauts de page

● Algorithme de préchargement

●

●

●

Quelles sont les pages à charger au lancement du processus ?

Cas extrême : aucune

Pagination à la demande pure

● Algorithme de remplacement

● Si il n'y a pas de frame libre, laquelle des pages décharger ?

● Algorithme de répartition des frames entre processus

● Combien de pages un processus a le droit de charger ?

Remplacement de page

Bit modifié (dirty)

● En plus du bit de validité, la table des pages
comprend aussi un bit modifié

● Si la page a été modifié, le bit est à 1, on doit
ré-écrire la page sur disque

● Si la page n'a pas été modifié, le bit est à 0, ce
n'est pas la peine de ré-écrire la page sur
disque

Algorithmes de remplacement

● Comment choisir la page victime ?

● But : minimiser le nombre de défauts de page

● Algorithmes proposés

●

●

●

●

●

Random

FIFO (first in first out)

FIF (furthest in future)

LRU (least recently used)

Clock

Remplacement FIFO

●

●

●

FIFO : first in first out

Pages déchargées suivant l'ordre d'arrivée

Gestion simple : une file d'attente FIFO

Pages adressées :

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Contenu des 3 frames :

f1 7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7

f2 0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0

f3 1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1

15 défauts de page

Remplacement FIF

●

●

●

FIF : furtherst in future

Remplacer la page qui sera accédée le plus tard

Optimal mais nécessite de connaître le futur !

Pages adressées :

3 0 3 2 1 2 0 1 7 0 1 7 0 1 2 0 3 0 4 2

Mémoire de 3 blocs :

b1 7 7 7 2 2 2 2 2 7

b2 0 0 0 0 4 0 0 0

b3 1 1 3 3 3 1 1

9 défauts de page

Remplacement LRU

●

●

● Utilisé, considéré performant, implémentation coûteuse

LRU : Least Recently Used

Remplacer la page non utilisée depuis le plus longtemps

Pages adressées :

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Mémoire de 3 blocs :

b1 7 7 7 2 2 2 4 4 4 0 1 1 1

b2 0 0 0 0 0 0 0 3 3 3 0 0

b3 1 1 1 3 3 2 2 2 2 2 7

12 défauts de page

Remplacement Clock

● Ou algorithme de la deuxième chance

● Bit de référence

●

●

Initialement page non utilisée : bit = 0

Utilisation de la page : bit = 1

● Deuxième chance

●

●

●

Liste circulaire FIFO

Si bit == 0, remplacement

Si bit == 1, bit ← 0, vers page suivante

● Approximation de LRU moins coûteux à implémenter

Remplacement Clock

Classement des algorithmes
de remplacement de pages

●

●

●

●

●

FIF

LRU

Clock

FIFO

Random

● Dépend des programmes

Répartition des frames
entre les processus

● Comment partager les frames entre les
processus ?

● Égalité entre processus

● avantages / inconvénients ?

● Variations dynamiques

Gestion globale ou locale des frames

● Gestion globale

●

●

Quand une nouvelle frame est demandée par un
processus, la frame allouée peut appartenir à un autre
processus

Variation dynamique du nombre de frames par
processus

● Gestion locale

●

●

Quand une page doit être déchargée, ne sont
considérées que les frames allouées au processus

Le nombre de frames par processus reste constant

Problème du remplacement global

● Considérons la situation suivante

●

●

●

●

●

Un processus s'exécute et essaye d'accéder à des pages non chargées

Le chargement des pages implique des E/S disque, le processus est en
attente et peut relâcher le processeur

Les autres processus n'ont pas assez de mémoire, ils génèrent aussi
des défauts de page

Le processeur est inoccupé et aucun processus en mémoire n'est prêt,
on va essayer de charger de nouveaux processus prêts

L'utilisation du processeur diminue, augmentation du nombre de
processus en exécution

● Les processus passent plus de temps à charger des pages qu'à calculer :
crash du système (trashing)

Remplacement local

●

●

Comment décider du nombre de frames par processus ?

Notion d'ensemble de travail (working set)

● Ensemble des pages accédées dans le dernier intervalle de temps

● Algorithme du working set

●

●

si la somme des WS de tous les processus est supérieure à la mémoire
physique

on suspend l'exécution d'un des processus et on décharge ses pages de la
mémoire

Working Set

Table des pages hiérarchique

● Taille d'un table de page de 4KO en 64bit

●

●

●

Taille d'une page : 2^12

Nombre de # de pages : 2^52

Taille de la table : 2^52 * 4O → énorme !

● Découper la table des pages en plusieurs
niveaux

0 63

adresse

12 11

page externe # page interne déplacement

33 32

Table des pages hierarchiques

mmap

● void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t
offset);

● mmap demande la projection en mémoire de length octets commençant à
la position offset depuis un fichier indiqué par le descripteur fd

● remplace les E/S dans des fichiers par des opérations en
mémoire : plus simple, plus rapide

● pagination à la demande : le fichier n'est pas intégralement chargé
en mémoire

● permet de recouvrir les chargements par des calculs

mmap

NUMA et la politique first touch

CPU 0

CPU 1

CPU 2

CPU 3

Noeud NUMA 3 Noeud NUMA 2

Barrette mémoire 3-1

Barrette mémoire 3-0

Barrette mémoire 2-1

Barrette mémoire 2-0

Noeud NUMA 0 Noeud NUMA 1

Barrette mémoire 0-1 Barrette mémoire 1-1

Barrette mémoire 0-0 Barrette mémoire 1-0

● Affinité mémoire : critique pour les
performances

● Bande passante

● Latence

● First touch

● premier accès à la page

● Polique de linux par défaut

● Lorsqu'une page est accédée pour la
première fois, on alloue une frame dans une
barrette mémoire sur le même nœud NUMA
que le thread qui a fait le défaut de page

● On peut modifier cette politique avec, par
exemple, la libnuma

● numactl --interleave

Mémoire virtuelle : conclusion

● 4 endroits où l'OS intervient

1.Création de processus

– décider de la taille de la table

– créer la table des pages

2.Exécution de processus

– remise à zéro du TLB

3.Défaut de page

– déterminer l'adresse virtuelle qui fait défaut

– swap entre page de remplacement et page demandée

4.Terminaison

– libérer la table des pages, les pages en mémoire

Allocation mémoire en espace

utilisateur

Issue de What Every Programmer

Should Know About Memory de Ulrich

Drepper

http://futuretech.blinkenlights.nl/misc/c

pumemory.pdf

http://futuretech.blinkenlights.nl/misc/cpumemory.pdf
http://futuretech.blinkenlights.nl/misc/cpumemory.pdf
http://futuretech.blinkenlights.nl/misc/cpumemory.pdf

Fonctionnement de malloc/free:

Linux sans arena

Approche centralisée
Verrou en entrée de fonction
Pas de distinction entre threads
Pas de notion de NUMA
First touch
Pas de lien avec l’ordonnanceur

Fonctionnement de malloc/free:

Linux sans arena

Fonctionnement de malloc/free:

Linux avec arena

Fonctionnement de malloc/free:

BSD

Approche hiérarchique
Notion de thread
Verrous distribués
Pas de notion de NUMA
Pas de lien avec l’ordonnanceur

Fonctionnement de malloc/free:

BSD

Fonctionnement de malloc/free:

BSD

Fonctionnement de malloc/free:

BSD

Fonctionnement de malloc/free:

BSD

Fonctionnement de malloc/free

Peu optimisé pour le contexte multithread
Support Linux des threads très limité (thread safe
uniquement)
Non lié à l’ordonnanceur (migration de pages)
Pas de support OpenMP

Pas de problème en MPI
Vision séquentielle
Pas de migration
Localité intrinsèque au modèle

Allocation mémoire en contexte

HPC

Issue des travaux de thèse de

Sébastien Valat

https://tel.archives-ouvertes.fr/tel-

01253537/document

https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document

Memory Allocation in User

Space

User Space
Reduce the number of requests to the OS

Drawbacks
Inefficient NUMA support

Data are allocated without NUMA knowledge
Inefficient multithread application support

Contention issue if threads target the same memory area

Data Locality in multithreaded

context

Data locality management with thread pools
Thread pools handle local management of allocations

List of free blocs (coming from macro-blocs splitting)
First level for algorithms (decision, splitting, fusion)

Exchange with Memory source via macro-blocs (> 2MB)
Ensure local memory accesses

Avoid false sharing
Easy when threads are bound
Enable thread migration and keep data locality

Data Locality in multithreaded

context

Drawbacks
Directly handle only allocation < 1 MB

Huge segment allocation are directly transferred to Memory Source
Multiple threads with huge segment allocation will cause contention of Memory Source

Solution implemented in MPC allocator:
Do not tackle directly the Global Pool

Levels of NUMA pools to avoid contention and NUMA effects with huge segments

Data Locality in multithreaded

context

Keep data locality
Efficient NUMA support
Efficient highly multithread application support
How to handle thread migration

Link between thread scheduler and memory allocator
Next touch policy

Allow to handle concurrency more precisely on each NUMA level
Allow page “recycling” between threads in the same NUMA level

Huge segments issues

Huge segment allocations still go through the

OS
Performance loss due to system calls
For sizes > 1MB, allocation cost is driven by page-faulting

MPC solution
The memory source is an allocator by itself

It keeps track of free macro-blocs for future reuse
If the segment is not too large
If the total amount of memory used for this macro-blocs cache is not tool large

Possibility to fuse adjacent macro-blocs to provide greater segments if necessary
Use mremap to resize segments if no matching segment is available

Drawbacks
Greater latency when the system call is still necessary

Set up of macro-blocs buffers for each NUMA Pool to avoid system calls
Increase memory consumption

Possibility to adjust dynamically the amount of memory available for macro-blocs
caches

AMR Code + MPC on Dual-

Westmere (2*6 cores)
Standard 4K pages

Transparent Huge Pages

Allocator Kernel Total (s) Sys. (s) Mem. (GB)

MPC-NUMA Std. 135.14 1.79 4.3

MPC-Lowmem Std. 161.58 15.97 2.0

Jemalloc Std. 143.05 14.53 1.9

Allocator Kernel Total (s) Sys. (s) Mem. (GB)

MPC-NUMA Std. 137.89 1.86 6.2

MPC-Lowmem Std. 196.51 28.24 3.9

Jemalloc Std. 144.72 14.66 2.5

AMR Code + MPC on

Nehalem-EX (128: 4*4*8 cores)

Memory allocation

Memory Semantic
Malloc only modify virtual memory space
Requests via mmap or brk system calls

Lazy Memory Allocation: Page Fault
Physical pages are then provided upon a first touch policy via a page fault
Allocation cost is not limited to malloc
Cache usage is linked to physical pages allocation

Reset memory pages
Security reason
Before providing page to the application
In kernel space

Page fault cost

Page zeroing

Kernel Space
40% of page fault execution time is due to zero-page.
Zero-page is useless from the application point of view.
Reuse dirty pages within the same process to avoid page zeroing.
Kernel patch using an extension to the mmap system call.

24 SEPTEMBRE 2017

User space

Kernel space
Free pages Kernel code

Process 0 Process 1

Local Pool

Process 2

Local Pool

Process 3

Local Pool

mmap(…MAP_ANON…) mmap(…MAP_ANON|MAP_PAGE_REUSE…)

Page fault performance results

(1/3)

Page fault performance results

(2/3)

Page fault performance results

(3/3)

MPC on Dual-Westmere (2*6

cores)
Kernel patch and standard 4K pages

Kernel patch and Transparent Huge Pages

Allocator Kernel Total (s) Sys. (s) Mem. (GB)

MPC-NUMA Std. 135.14 1.79 4.3

MPC-Lowmem Std. 161.58 15.97 2.0

MPC-Lowmem Patched 157.62 10.60 2.0

Jemalloc Std. 143.05 14.53 1.9

Jemalloc Patched 140.65 9.32 3.2

Allocator Kernel Total (s) Sys. (s) Mem. (GB)

MPC-NUMA Std. 137.89 1.86 6.2

MPC-Lowmem Std. 196.51 28.24 3.9

MPC-Lowmem Patched 138.77 2.90 3.8

Jemalloc Std. 144.72 14.66 2.5

Jemalloc Patched 138.47 6.40 3.2

Results on Dual-Westmere (2*6

cores)

Physical page allocation

Linux
Random page distribution

Linux Transparent Huge Pages
Random page distribution
Huge pages

OpenSolaris
Page coloring
Hash on virtual page addresses
Without PID

FreeBSD
Page coloring
Hash on virtual page addresses
Without PID
Superpages

Physical page allocation

Experimental setup
Processor Bi Intel Xeon-E5502 (quad core Nehalem)
Frequency 2.27 GHz
Cache L3 8 MB
Cache L2 256 KB
Cache L1 32 KB
Memory 24 GB

Software stack
GCC 4.4.1
Identical software stack
Identical compilation options

Native execution

Cache usage

Impact of page allocation policy

on benchmarks

Impact of page allocation policy

on application

Conclusion

Page zeroing
Kernel-space patch in Linux 2.6.32 and 2.6.36
Performance improvements

up to 45% on sequential page faults
up to 66% for 12 threads

Limitation for standard usage (outside HPC)
No support for SWAP
Need pool cleaning method

Physical pages allocation
Huge impact on execution time

Up to 51% performance improvement and 91% performances decrease
POC: kernel module with contiguous physical pages allocation to improve cache
usage

