Architecture d'un systeme
d’exploitation:
Allocation mémoire

Basé sur le cours de Marc

Tchiboukdjian et les travaux de
recherche de Sébastien Valat

Bibliographie

La programmation sous UNIX de Jean-Marie
Rifflet

Systeme d’exploitation d’Andrew Tanenbaum
What Every Programmer Should Know About
Memory de Ulrich Drepper

Contribution a I'amélioration des méthodes
d'optimisation de la gestion de la mémoire
dans le cadre du Calcul Haute Performance de
Sébastien Valat

Framework de R&D
http://mpc.hpcframework.com

http://mpc.hpcframework.com/

Déroulement du cours

 Allocation mémoire en espace noyau

 Allocation memoire en espace utilisateur

 Allocation mémoire en contexte HPC

Allocation mémoire en espace
noyau

La programmation sous UNIX de Jean-
Marie Rifflet

Systeme d’'exploitation d’Andrew
Tanenbaum

Meémoire physique

Un tableau de cases ou cellules mémoire
Chaqgue case : un nombre défini de bits
Chaqgue case a un numéro : une adresse

Mot mémoire : information contenue dans une case

RAM pour Random Access Memory

Taille sur un systeme actuel : de quelgues Go (telephone
portable) a 1 To (un nceud d'un super-calculateur)

Meémoire physique

-

Noeud NUMAO

Barrette mémoire 0-1

Barrette mémoire 0-0

~

|

|

|

-

Noeud NUMA 3

Barrette mémoire 3-1

Barrette mémoire 3-0

~N

-

Noeud NUMA 1

Barrette mémoire 1-1

Barrette mémoire 1-0

~N

CPUQ = CPU1

CPUS = CPU2

|

|

|

-

Noeud NUMA 2

Barrette mémoire 2-1

Barrette mémoire 2-0

~N

4 Nehalem EX
processors

Meémoire vue par le programmeur

Espace d'adressage logique

Code du programme

Non utilisé
. Stocké dans la zone texte

Variables allouées statiguement ZONE TEXTE
. Stockées dans la zone donnée ZONE DONNEE
. Durée de vie du programme

Variables allouées automatiquement

. Stockees dans la pile (stack)
- Durée de vie liée a la fonction ou a un bloc _
Variables allouées manuellement

. Stockees dans le tas (heap)
. En C avec malloc/free

- Durée de vie gérée par le programmeur

Variables statiques et automatiques

- Variables statigues (ou globales)
. Durée de vie du programme
. EnC:

- variable globale (déclarée a I'extérieure de toute fonction)
- variable préfixee par le mot clé static

- Variables automatiques (ou locales)

- Durée de vie associée a leur portée (fonction ou
bloc)

-« En C : variable locale

Meémoire vue par le programmeur

- Code et les données sont chargées en
memoire juste avec lI'exécution du Non utilisé
programme par le loader

ZONE TEXTE

ZONE DONNEE

- La pile est gerée

- En C : par le compilateur

- En Assembleur : par le programmeur _

- Le tas est geré par le programmeur

- Interface : malloc/free

- Implémentation : libc (allocateur mémoire)

Malloc/Free

. Utilisation
. #include <stdlib.h>
. void *malloc(size t size);
. void free(void *ptr);

- Fait partie de I'espace utilisateur

. L'implémentation de l'allocateur mémoire fait des appels systemes
Groupe plusieurs appels a malloc (rapide) en un seul appel systeme (plus lent)

- brk/sbrk : augmente la taille du tas
- mmap : recupere de lI'espace mémoire (libc : pour les grosses allocations)

. Critigue pour les performances de certains codes (C,C++)
. Parallélisme (plusieurs threads appellent malloc), Localité (NUMA)
. D'autres implémentations que la libc existent (ex : Google TCMalloc)

Malloc/Free : probleme de la
fragmentation meémoire

- Apres une série de malloc/free, la memoire est
fragmentée en parties utilisées et parties libérées

- Implémentation de l'allocateur méemoire

- Choix de la zone ou placer une nouvelle allocation
- First fit / Best fit / Worse fit
- Compromis performance / consommation memoire

Problemes poseés par
les adresses logiques

- Espace d'adresses logiques = abstraction de la mémoire
. Simple pour le programmeur
. Comment I'implémenter ?

- La mémoire logigue est plus grande que la mémoire
physique. Comment fait on si on a moins de 2°* bits de
memoire ? (cas usuel)

- Multiprogrammation : plusieurs processus s'executent
en « méme temps »

. Probleme 1 : ils veulent utiliser la méme adresse
. Probleme 2 : >, mémoires processus > memoire principale

Solution : la mémoire virtuelle

- Mémoire physique et mémoire logigue sont
decoupées en utilisant la méme taille de zone

. Meémoire physique : en frames
. Mémoire logigue : en pages
- Tallle usuelle : 4KO (huge page 2MO)

- Adresse logigue = un numero de page + un
deplacement
63 12 11 0

adresse numéro de page déplacement

La mémoire virtuelle

Mémoire physique découpée en frames

‘ O/ 1! 21 3|41|5 |6 7181 91l10

espace mémoire inutilise
2

‘ 0| 1 3| 4 997 | 998|999

Mémoire logique découpée en pages

La correspondance entre les pages et les frames est stockée dans la table des pages

Meémoire vue par
le systeme d'exploitation

Espaces
< Vue du P

d'adressage logique
programmeur
S G S G S S G
C |t | P C |t | P T C |t | FI’ T C t&l T
d ?&E L e b e : > g ?&(I:)) e e g ?E I 2
| | c | c |
Vue du
systéeme
d'exploitation
0 haut
Vue du Espace
./ processeur d'adressage

physique

Gestion des frames et des pages

- Table des frames

. Une case par frame
. Libre ou allouée

- Si allouée, information sur le processus et la page

- Table des pages

- Par processus
- Fait partie de son contexte

Traduction des adresses logiques
en adresses physiques :
la table des pages

logical physical
address address fO000 ... 0000
’
CPU > p d f d >
A
111 < o 1T
p {
— f

physical
memory

page table

Implémentation de la table des
pages systeme
- Registre de table de pages

. Table des pages en mémoire centrale
. Un registre contient I'adresse de la table

- Implique des acces memoire lors de la traduction
des adresses (lent)

- Mémoire cache dédiée

- TLB : Translation Look-aside Buffer

TLB : mémoire associative

- Mémoire associative : recherche tres rapide en parallele

Page# Frame#

- Si le numéro de page est dans le TLB, on recupere le
numero de frame : tres rapide car pas d'acces mémoire

- Sinon, recupérer le numeéro dans la table des pages : lent
car acces memoire

Implémentation de la table des

pages systeme avec TLB

CPU

address

logical

—

p | d

page frame
number numbe

r

TLB hit

YYVYYYYY

TLB

p {
TLB miss

>

physical
l I} address
f d
A
physical
memory

page table

Fichier d'échange / Swap

- Que faire si le nombre de pages utilisés par tous les
processus est supérieur au nombre de frames (taille
de la mémoire physique) ?

- Les pages supplémentaires sont stockees sur le
disque dans une partition spécifique ou un fichier :
le swap

- Sl #pages x 4 KO > taille(mémoire physique + swap),
le systeme d'exploitation tue un processus qui
consomme beaucoup de mémoire

Fichier d'échange / Swap

+ Les processus ne sont chargés que
partiellement

- Les pages non chargées sont stockees sur le
disque

- Le chargement est paresseux (lazy) : une page
est chargée lors du premier acces a une
adresse contenue dans la page

program

A

program
B

main
memory

Fichier d'échange / Swap

swap out

N
N

g [N 2] = |

b e

}\ swap in

411 501 601 701

8] 9 HO[H1[]
12 18 14 15[]

16D17;|18;|19[;]

0| 21 22] 28] |
-,

- Référence de page

- |nvalide

- Page en mémoire :
on continue lI'exécution

- Page sur disque :
defaut de page
(page fault)

- On charge la page en
memoire

- Sl pas de place,
remplacement de page

B

it de validité

- Comment déterminer si la page est en mémoire

ou sur disque ?

-+ On rajoute un bit de validite dans la table des

pages

« Sile bit de valid

meéemoire a l'em

- Sile bit de valid

ité est a 1, la page est en
nlacement de la frame

ité est a O, la page est sur le

disque : déclenchement d'un defaut de page

~N o o B~ wMN

W M m|O|O|m| >

H

logical
memory

Bit de validité

frame

valid—invalid
bit

v
i
6 |V
i
i
v
i
i

~N o 0w N = O

page table

0
1
2
3 N
T . 4
5
6 G A B
! C D E
8
sl F F| [a| [H
10
11

-
12
13
14
15

physical memory

Gestion des défauts de page

load M

@ page is on
backing store

\w

o
operating
system
reference
trap
<t \, i
restart page table
Instruction
free frame
reset page
table
physical

memory

\p/
bring in
missing page

Gestion des défauts de page

- Algorithme de préchargement
. Quelles sont les pages a charger au lancement du processus ?
. Cas extréme : aucune

- Pagination a la demande pure

. Algorithme de remplacement
- Siil n'y a pas de frame libre, laquelle des pages decharger ?

- Algorithme de répartition des frames entre processus
- Combien de pages un processus a le droit de charger ?

Remplacement de page

frame valid—invalid bit

N Y
change
0 | to invalid
1@
reset page
page table table for
new page

swap out
victim

victim

@ swap

desired
page in

physical
memory

P N
N

Bit modifié (dirty)

+ En plus du bit de validité, la table des pages
comprend aussi un bit modifié

- Sl la page a été modifie, le bit est a 1, on doit
rée-écrire la page sur disque

- Sl la page n'a pas eté modifié, le bit est a O, ce
n'est pas la peine de ré-ecrire la page sur
disque

Algorithmes de remplacement

- Comment choisir la page victime ?
+ But : minimiser le nombre de défauts de page

- Algorithmes proposés

- Random

. FIFO (first In first out)

. FIF (furthest in future)

. LRU (least recently used)
. Clock

Remplacement FIFO

« FIFO : first in first out
. Pages déchargees suivant l'ordre d'arrivée

. Gestion simple : une file d'attente FIFO

Pages adressées :
70120304230321201701

Contenu des 3 frames :

£f1 7 7 7 2 2 2 2 44 40000O0O0O07717717

£f2 0 000333222221111100

£3 111100033333 222221
15 défauts de page

Remplacement FIF

 FIF : furtherst in future
. Remplacer la page qui sera accédee le plus tard

. Optimal mais nécessite de connaitre le futur !

Pages adressées :
70120304230321201701

Mémoire de 3 blocs :

bl 7 7 7 2 2 2 2 2 7
b2 00O 0 4 0 0 0
b3 11 3 3 3 1 1

9 défauts de page

Remplacement LRU

- LRU : Least Recently Used
- Remplacer la page non utilisée depuis le plus longtemps

Pages adressées :
70120304230321201701

Mémoire de 3 blocs :

bl 77 7 2 2 2 4 4 40 1 1 1
b2 0O 00O0O 0 033 3 0 0
b3 1113 3222 2 2 7

12 défauts de page

- Utilisé, considére performant, implementation codteuse

Remplacement Clock

. Ou algorithme de la deuxieme chance

- Bit de référence
. Initialement page non utilisée : bit =0
. Utilisation de la page : bit=1

- Deuxieme chance

- Liste circulaire FIFO
- Si bit == 0, remplacement
- Si bit==1, bit — O, vers page suivante

- Approximation de LRU moins colteux a implémenter

Remplacement Clock

reference pages reference pages
bits D bits /’\
0) 0
i i
) 0
v v
next
victim [3 L 2
v v
1 0]
v v
0 —=p» O

J ¢
Sy ol

circular queue of pages circular queue of pages

(a) (b)

Classement des algorithmes
de remplacement de pages

. FIF

. LRU
. Clock
. FIFO

- Random

- Dépend des programmes

Répartition des frames
entre les processus

- Comment partager les frames entre les
processus ?

- Egalité entre processus

- avantages / inconveénients ?

- Variations dynamiques

Gestion globale ou locale des frames

- Gestion globale

- Quand une nouvelle frame est demandée par un
processus, la frame allouée peut appartenir a un autre
processus

- Variation dynamique du nombre de frames par
processus

- Gestion locale

- Quand une page doit étre déchargée, ne sont
considérées gue les frames allouées au processus

- Le nombre de frames par processus reste constant

Probleme du remplacement global

Considérons la situation suivante

Un processus s'exécute et essaye d'accéder a des pages non chargées

Le chargement des pages implique des E/S disque, le processus est en
attente et peut relacher le processeur

- Les autres processus n'‘ont pas assez de mémoire, ils génerent aussi
des deéfauts de page

Le processeur est inoccupeé et aucun processus en mémoire n'est preét,
on va essayer de charger de nouveaux processus préts

L'utilisation du processeur diminue, augmentation du nombre de
processus en execution

Les processus passent plus de temps a charger des pages qu'a calculer :
crash du systeme (trashing)

Remplacement local

. Comment décider du nombre de frames par processus ?
. Notion d'ensemble de travail (working set)

- Ensemble des pages accédées dans le dernier intervalle de temps

page reference table
...2615777751623412344434344413234443444. ..

N R

2 L,

WS(t,) ={1,2,5,6,7} WS(t,) = {3,4}

- Algorithme du working set

- si lasomme des WS de tous les processus est supérieure a la méemoire
physique

- on suspend I'exécution d'un des processus et on décharge ses pages de la
memoire

page-fault rate

Working Set

increase number
of frames

upper bound

lower bound

decrease number
of frames

number of frames

Table des pages hierarchique

- Tallle d'un table de page de 4KO en 64bit
. Tallle d'une page : 212
. Nombre de # de pages : 2"52

- Tallle de la table : 2"52 * 40 — énorme !

- Découper la table des pages en plusieurs
niveaux

63 33 32 12 11 0
page externe # page interne déeplacement

adresse

Table des pages hierarchiques

outer page
table

1 =
. 100
500 NG
100 500
708 M\\
< 708
9?9 N 900
900]
page of 929
page table
page table

memory

logical address

pr | P2 [d |

o

3!
i

outer page
table

=

page of
page table

mmap

- void * mmap(void *start, size t length, int prot , int flags, int fd, off t
offset);

- mmap demande la projection en mémoire de length octets commencant a
la position offset depuis un fichier indiqué par le descripteur fd

- remplace les E/S dans des fichiers par des opérations en
memoire : plus simple, plus rapide

- pagination a la demande : le fichier n'est pas intégralement chargé
en méemoire

- permet de recouvrir les chargements par des calculs

mmap

2
3
4
5
6
process B
virtual memory

| | | L |
R e e -
I T I
I I U D (I
I o
K s el ok L mnmnn w5 5 i i F
“ _.Il_k __ 1 |
= i _ __@ I ﬁ
4 ¥ \ A 4 S: 7!
>
)
£
)
o™ o |0 < QN m
©
Q
[}
>
il o
o
A3) /Y W Y ¥ _\
Kt --] |y
_.||_l|||.TII_ | __
I “ I U .]
[e i o o !
|

213]|14([5]6

1

r
2
3
4
5
6
process A
virtual memory

disk file

NUMA et |la politique first touch

Affinité mémoire : critique pour les
performances
. Bande passante

. Latence

First touch
. premier acces a la page
. Polique de linux par défaut

Lorsqu'une page est accédée pour la
premiere fois, on alloue une frame dans une
barrette mémoire sur le méme nceud NUMA
gue le thread qui a fait le défaut de page

On peut modifier cette politique avec, par
exemple, la libnuma

. humactl --interleave

Noeud NUMA O

Barrette mémoire 0-1

Noeud NUMA1

Barrette mémoire 1-1

Barrette mémoire 0-0

Barrette mémoire 1-0

|

|

[

CPUO |e=T == CPU1

CPU3 | =" CPU2

|

|

[

Noeud NUMA3

Barrette mémoire 3-1

Noeud NUMA?2

Barrette mémoire 2-1

Barrette mémoire 3-0

Barrette mémoire 2-0

Mémoire virtuelle : conclusion

« 4 endroits ou I'OS intervient

1.Création de processus

- décider de la taille de la table
- créer la table des pages

2.Exécution de processus
- remise a zéro du TLB
3.Deéfaut de page

- déterminer l'adresse virtuelle qui fait défaut
- swap entre page de remplacement et page demandée

4. Terminaison
- libérer la table des pages, les pages en meémoire

Allocation mémoire en espace
utilisateur

Issue de What Every Programmer
Should Know About Memory de Ulrich

Drepper
http://futuretech.blinkenlights.nl/misc/c

pumemory.pdf

http://futuretech.blinkenlights.nl/misc/cpumemory.pdf
http://futuretech.blinkenlights.nl/misc/cpumemory.pdf
http://futuretech.blinkenlights.nl/misc/cpumemory.pdf

Fonctionnement de malloc/free:
LINUuX sans arena

Approche centralisee

Verrou en entrée de fonction
Pas de distinction entre threads
Pas de notion de NUMA

First touch

Pas de lien avec 'ordonnanceur

Fonctionnement de malloc/free:
LINUuX sans arena

an allocated | sizefstatus=inuse
chunk ... USet data space ...
31zZe
| smestatsmttee. T m—
a freed
chunk pontet to next chunk 1 bin
pointet to previous chunk 1n o
Lused space ...
31zZe
" HIW |
chunk uset data
31ze
o s
othet chunks|
wilderness s1ze/stams=iree
chunk
31zZe

(

end of available memoty

Fonctionnement de malloc/free:
LInuxX avec arena

Thread A Thread B @ Thread D @

4
[Amnao} [Amn&l}

Figure 2: Larson and Krishnan (1998) hash thread identifiers in order to permanently assign threads to
arenas. This is a pseudo-random process, so there is no guarantee that arenas will be equally utilized.

Fonctionnement de malloc/free:
BSD

Approche hiérarchique

Notion de thread

Verrous distribués

Pas de notion de NUMA

Pas de lien avec I'ordonnanceur

Fonctionnement de malloc/free:
BSD

CPUO CPU 1
/™ VAN
Thread A Thread B

-« cache line >

Figure 1: Two allocations that are used by separate threads share the same line in the physical memory
cache (false cache sharing). If the threads concurrently modify the two allocations, then the processors
must fight over ownership of the cache line.

Fonctionnement de malloc/free:
BSD

0x00000000
0x00200000
0x00400000
0x00600000
0x00800000
0x00a00000
0x00c00000
0x00e00000
0x01000000
0x01200000
0x01400000
0x01600000
0x01800000
0x01a00000
0x01c00000
0x01e00000
0x02000000

unusable

unusable

unusable

unused

Figure 3: Chunks are always the same size, and start at chunk-aligned addresses. Arenas carve chunks
into smaller allocations, but huge allocations are directly backed by one or more contiguous chunks.

Fonctionnement de malloc/free:
BSD

T o« |
g o
V0 ®
EE m
pale
S < _
rec <
@
m —
E
Q
o
cca cfrac gs shébench sming
T @
EN ©
03
E ¢ — B dimalloc
@ ‘é < B phkmalloc
g & o B jemalloc
£3
£ -
Q
o

cca cfrac gs sh6bench sming

Figure 8: Scaled run time and maximum resident memory usage for five single-threaded programs. Each
graph is linearly scaled such that the maximum value is 1.0.

Fonctionnement de malloc/free:
BSD

——
2 -
o~
H |
e
g ©
3 OE
S
I %-
E -
2 _
=S
3 “ —— jemalloc
% —— dimalloc
] - —— phkmalloc
L ———
| | | | | | | I | | | | | | | | | | | |
5 10 15 20

Threads

Figure 6: Allocator throughput, measured in allocations/second, for increasing numbers of threads. Each
run performs a total of 40,000,000 allocation/deallocation cycles, divided equally among threads, creating
one 512-byte object per cycle. All configurations are replicated three times, and the results are summa-
rized by box plots, where the central lines denote the medians and the whiskers represent the most
extreme values measured.

Fonctionnement de malloc/free

Peu optimisé pour le contexte multithread
Support Linux des threads tres limité (thread safe
uniguement)

Non lié a 'ordonnanceur (migration de pages)
Pas de support OpenMP

Pas de probleme en MPI
Vision sequentielle
Pas de migration
Localité intrinseque au modele

Allocation mémoire en contexte
HPC

Issue des travaux de these de

Sébastien Valat
https://tel.archives-ouvertes.fr/tel-

01253537/document

https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document

£

Memory Allocation in User
Space

User Space

Reduce the number of requests to the OS

Drawbacks

Inefficient NUMA support
Data are allocated without NUMA knowledge

Inefficient multithread application support
Contention issue if threads target the same memory area

——— e e e e e e e,

0S

™

fI_hf_[emnr}f Source
(Global Pool)

.

FFIM![enm:Jrr:g,r Source

(User Segment)
M

-
- =
- =
- e

_,z" =

-

- =
vy
¥

Allocation Chain

Apphi

Data Locality in multithreaded

context

Data locality management with thread pools

Thread pools handle local management of allocations
List of free blocs (coming from macro-blocs splitting)
First level for algorithms (decision, splitting, fusion)
Exchange with Memory source via macro-blocs (> 2MB)
Ensure local memory accesses

Avoid false sharing

Easy when threads are bound
Enable thread migration and keep data locality

——— e e e e e e e,

0S

™

.

fI_hf_[emﬂr}r Source R
(Global Pool)
/
ra Y
Memory Source
\(U ser Segment) gy

',-"_"N

Thread Pool

Thread Pool

Thread Pool

Thread Pool

Thread Pool

— T N NS

e

Allocation Chain

Apphi

Data Locality in multithreaded

context

Drawbacks

Directly handle only allocation <1 MB

Huge segment allocation are directly transferred to Memory Source

Multiple threads with huge segment allocation will cause contention of Memory Source

Solution implemented in MPC allocator:

Do not tackle directly the Global Pool
Levels of NUMA pools to avoid contention and NUMA effects with huge segments

——— e e e e e e e,

0S

™

.

fI_hf_[emﬂr}r Source R
(Global Pool)
/
ra Y
Memory Source
\(U ser Segment) gy

-

',-"_"N

Thread Pool

Thread Pool

Thread Pool

Thread Pool

Thread Pool

— T N NS

e

Allocation Chain

Apphi

Data Locality in multithreaded

context

Keep data locality

Efficient NUMA support
Efficient highly multithread application support
How to handle thread migration
Link between thread scheduler and memory allocator
Next touch policy
Allow to handle concurrency more precisely on each NUMA level
Allow page “recycling” between threads in the same NUMA level

——— e e e e e e e,

f ™

0S

fI_hf_[emﬂr}r Source
(Global Pool)

.

FFIM![enm:Jr:,,r Source

(User Segment)
M

‘"_\ -
NUMA Pool 1

v

™y 3
NUMA Pool 2

.-f: y -

- -
!

',-"_‘\

Thread Pool

Thread Pool

Thread Pool

Thread Pool

Thread Pool

— T N NS

e

Allocation Chain

Apphi

Huge segments Issues

Huge segment allocations still go through the
OS

Performance loss due to system calls
For sizes > 1MB, allocation cost is driven by page-faulting

MPC solution

The memory source is an allocator by itself
It keeps track of free macro-blocs for future reuse
If the segment is not too large
If the total amount of memory used for this macro-blocs cache is not tool large
Possibility to fuse adjacent macro-blocs to provide greater segments if necessary
Use mremap to resize segments if no matching segment is available

Drawbacks

Greater latency when the system call is still necessary
Set up of macro-blocs buffers for each NUMA Pool to avoid system calls

Increase memory consumption
Possibility to adjust dynamically the amount of memory available for macro-blocs
caches

AMR Code + MPC on Dual-
Westmere (2*6 cores)

Standard 4K pages

Dl)L Sy, O e, GB)

MPC-NUMA 135.14 1.79
MPC-Lowmem Std. 161.58 15.97 2.0
Jemalloc Std. 143.05 14.53 1.9

Transparent Huge Pages

i LSy O Lier, (G2

MPC-NUMA 137.89 1.86
MPC-Lowmem Std. 196.51 28.24 3.9
Jemalloc Std. 144.72 14.66 2.5

AMR Code + MPC on
Nehalem-EX (128: 4*4*8 cores)

Execution time (s) Resident memory (GB)
900 18
800 16
700 14
600 12
500 10
400 8
300 6
200 4
0 0
\g &‘ & NG s &
> P -@*’5‘ c,@"’ \;\5 ,o’é‘\ gs\ 6@- 6@\
@} Q \0 N xS) @) NS) O
Q < < QO ,ég ¢ S

mSystem mUser = Other

Memory allocation

Memory Semantic

Malloc only modify virtual memory space
Requests via mmap or brk system calls

Lazy Memory Allocation: Page Fault

Physical pages are then provided upon a first touch policy via a page fault
Allocation cost is not limited to malloc
Cache usage is linked to physical pages allocation

Reset memory pages

Security reason
Before providing page to the application
In kernel space

Page fault cost

Page fault time on 128 cores

Time (Kcycles / 4K / Task)

512
256
128

64

| | I I ! I
Threads —+— ;
- Processes —— T

Number of threads

Page zeroing

Kernel Space

40% of page fault execution time is due to zero-page.

Zero-page is useless from the application point of view.

Reuse dirty pages within the same process to avoid page zeroing.
Kernel patch using an extension to the mmap system call.

mmap (..MAP_ANON...) mmap (..MAP_ANON|MAP_PAGE_REUSE...)

User space

Local Pool

Local Pool Local Pool

?

Kernel code Free pages

Kernel space

Time (Kcycles / 4K/ Thread)

Page fault performance results

Patched page fault time on 1 socket of 6 cores

—
N

Stan'dard Kerrlwel —
Patphed Kerrjel —*—

—_
o =

1
1
'
'
1
1
1
1
1
1
1
1
1
1
1
1
'
'
'
0
1
1
1
1
1
1
1
1
1
1
1
1
'
'
'
'
1
1
1
1
1
1
1
1
1
1
1
1
'
1
1
1
1
1
'
'
'
1
1
1
1
1
1
1
1
]
I
1
1
'
'
'
'
1
1
1
1
1
1
1
1
1
1
1
1
'
'
'
1
1
1
1
1
1
1
1
1
1
1
'
1
1
1
1
1
'
'
'
1
4
1
1
1
1
1
1
1
1
1
1
'
'
'
'
1
1
1
1
1
1

— N W H 0100 NN @
I

Number of threads

Time (Kcycles / 4K / Thread)

Page fault performance results

18
16
14
12
10

Patched page fault time on 12 NUMA cores

Stand:'.—lrd Kernel —

Number of threads

Page fault performance results
(3/3)

100

Page fault time on 2*6 cores + THP + Kernel Patch

THP /512 —+—
Patched THP /512 ---%--- |

Time (Kcycles / 4K/ Thread)

oo

Number of threads

MPC on Dual-Westmere (2*6
cores)

Kernel patch and standard 4K pages

Dl LSy, O e, (GB)

MPC-NUMA 135.14 1.79

MPC-Lowmem Std. 161.58 15.97 2.0
MPC-Lowmem Patched 157.62 10.60 2.0
Jemalloc Std. 143.05 14.53 1.9
Jemalloc Patched 140.65 9.32 3.2

Kernel patch and Transparent Huge Pages

Allocator Total (s) Sys. (s) Mem. (GB)

MPC-NUMA 137.89 1.86

MPC-Lowmem Std. 196.51 28.24 3.9
MPC-Lowmem Patched 138.77 2.90 3.8
Jemalloc Std. 144.72 14.66 2.5

Jemalloc Patched 138.47 6.40 3.2

Results on Dual-Westmere (2*6
cores)

Hera execution
12 mpi tasks, 1 core per task

140

i Compute
130 | System oooooas
Other m—

120 §
110 i
100 i
90 i
80 i
70 i
60 E

Execution time (sec)

50_—
40_—
30_—
20_—

10

Native VM-nopatch VM-withpatch

Physical page allocation

LInux

Random page distribution

Linux Transparent Huge Pages

Random page distribution
Huge pages

OpenSolaris
Page coloring
Hash on virtual page addresses
Without PID

FreeBSD

Page coloring

Hash on virtual page addresses
Without PID

Superpages

Physical page allocation

Experimental setup
Processor Bi Intel Xeon-E5502 (quad core Nehalem)
Frequency 2.27 GHz
Cache L3 8 MB
Cache L2 256 KB
Cache L1 32 KB
Memory 24 GB

Software stack

GCC4.4.1
Identical software stack
Identical compilation options

Native execution

Cache usage

Cycles per instructions

2.8

2.6

2.4

2.2

1.8

1.6

1.4

L3 cache usage (8 Mo) on Nehalem

LiI!lUX
Linux + THP

.......................

Buffer size (MB)

10 12

Impact of page allocation policy

— m _ _f |||||||||| | 1 0
g N L @
Lan
g DL THHHHHHHH_ 18
o1 L 1 =
QO " _
% m + ;
sy oW 15
Qo C | -I_ —
O I w m
- e 1@

NAS NPB3.2-MP class C
!
|
FT

EP

0
m ‘ O
B IR 1=
| | m
_ , _ , ,
-] (- -] -] -] (- -]
°© ¥ Y79

(%) xnur] o} paisedwod ureb asuewliopad

Benchmark

Impact of page allocation policy

Execution time (s)

EulerMHD, 8 MPI processes
140 | | |

120 [R
£00 s s s o

80
60
40
20

0

100 400 800 1000
Problem size

Linux — FreeBSD S—

Linux + THP =mmmmm OpenSolaris 7777 s

Conclusion

Page zeroing

Kernel-space patch in Linux 2.6.32 and 2.6.36
Performance improvements
up to 45% on sequential page faults
up to 66% for 12 threads
Limitation for standard usage (outside HPC)
No support for SWAP
Need pool cleaning method

Physical pages allocation

Huge impact on execution time

Up to 51% performance improvement and 91% performances decrease
POC: kernel module with contiguous physical pages allocation to improve cache
usage

