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Déroulement du cours  

• Allocation mémoire en espace noyau 

 

• Allocation mémoire en espace utilisateur 

 

• Allocation mémoire en contexte HPC 



Allocation mémoire en espace 

noyau 

La programmation sous UNIX de Jean-

Marie Rifflet 

 

Système d’exploitation d’Andrew 

Tanenbaum 

 



Mémoire physique 

●  Un tableau de cases ou cellules mémoire 

●  

●  

●  

Chaque case : un nombre défini de bits  

Chaque case a un numéro : une adresse 

Mot mémoire : information contenue dans une case 

●  RAM pour Random Access Memory 

●  Taille sur un système actuel : de quelques Go (téléphone 
portable) à  1 To (un nœud d'un super-calculateur) 



Mémoire physique 

4 Nehalem EX  
processors 

CPU 0 CPU 1 

CPU 2 CPU 3 

Noeud NUMA 0 

Barrette mémoire 0-1 

Barrette mémoire 0-0 

Noeud NUMA 3 

Barrette mémoire 3-1 

Barrette mémoire 3-0 

Noeud NUMA 2 

Barrette mémoire 2-1 

Barrette mémoire 2-0 

Noeud NUMA 1 

Barrette mémoire 1-1 

Barrette mémoire 1-0 



Mémoire vue par le programmeur 

●  

●  

Espace d'adressage logique  

Code du programme 

●  Stocké dans la zone texte 

●  Variables allouées statiquement 

●  

●  

Stockées dans la zone donnée  

Durée de vie du programme 

●  Variables allouées automatiquement 

●  

●  

Stockées dans la pile (stack) 

Durée de vie liée à la fonction ou à un bloc 

●  Variables allouées manuellement 

●  

●  

●  

Stockées dans le tas (heap)  

En C avec malloc/free 

Durée de vie gérée par le programmeur 

 
 

Non utilisé 

 

ZONE TEXTE 

ZONE DONNEE 

 

TAS 

 

PILE 

 

ZONE U 



Variables statiques et automatiques 

●  Variables statiques (ou globales) 

●  

●  

Durée de vie du programme  

En C : 

– 

– 

variable globale (déclarée à l'extérieure de toute fonction)  

variable préfixée par le mot clé static 

●  Variables automatiques (ou locales) 

●  

●  

Durée de vie associée à leur portée (fonction ou  
bloc) 

En C : variable locale 



Mémoire vue par le programmeur 

●  Code et les données sont chargées en  
mémoire juste avec l'exécution du  
programme par le loader 

●  La pile est gérée 

●  

●  

En C : par le compilateur 

En Assembleur : par le programmeur 

●  Le tas est géré par le programmeur 

●  

●  

Interface : malloc/free 

Implémentation : libc (allocateur mémoire) 

 
 

Non utilisé 

 

ZONE TEXTE 

ZONE DONNEE 

 

TAS 

 

PILE 

 

ZONE U 



Malloc/Free 
●  Utilisation 

●  

●  

●  

#include <stdlib.h> 

void *malloc(size_t size);  

void free(void *ptr); 

●  Fait partie de l'espace utilisateur 

●  

●  

●  

L'implémentation de l'allocateur mémoire fait des appels systèmes 

Groupe plusieurs appels à malloc (rapide) en un seul appel système (plus lent) 

brk/sbrk : augmente la taille du tas 

mmap : récupère de l'espace mémoire (libc : pour les grosses allocations) 

●  Critique pour les performances de certains codes (C,C++) 

●  

●  

Parallélisme (plusieurs threads appellent malloc), Localité (NUMA)  

D'autres implémentations que la libc existent (ex : Google TCMalloc) 



Malloc/Free : problème de la  
fragmentation mémoire 

●  Après une série de malloc/free, la mémoire est  
fragmentée en parties utilisées et parties libérées 

●  Implémentation de l'allocateur mémoire 

●  Choix de la zone où placer une nouvelle allocation 

– First fit / Best fit / Worse fit 

●  Compromis performance / consommation mémoire 

Tas 



Problèmes posés par  
les adresses logiques 

●  Espace d'adresses logiques = abstraction de la mémoire 

●  

●  

Simple pour le programmeur  

Comment l'implémenter ? 

●  La mémoire logique est plus grande que la mémoire  
physique. Comment fait on si on a moins de 2⁶⁴ bits de  
mémoire ? (cas usuel) 

●  Multiprogrammation : plusieurs processus s'exécutent  
en « même temps » 

●  

●  

Problème 1 : ils veulent utiliser la même adresse  

Problème 2 :  mémoires processus > mémoire principale 



Solution : la mémoire virtuelle 

●  Mémoire physique et mémoire logique sont  
découpées en utilisant la même taille de zone 

●  

●  

●  

Mémoire physique : en frames  

Mémoire logique : en pages 

Taille usuelle : 4KO (huge page 2MO) 

●  Adresse logique = un numéro de page + un  
déplacement 

63 

adresse 

12  11 0 

déplacement numéro de page 



La mémoire virtuelle 

Mémoire physique découpée en frames 

0 1 2 3 4 997 998 999 

0 1 2 3 4 5 6 7 8 9 10 

espace mémoire inutilisé 

Mémoire logique découpée en pages 

 

 
La correspondance entre les pages et les frames est stockée dans la table des pages 



Mémoire vue par 
le système d'exploitation 

Vue du  
processeur 

Vue du  
programmeur 

Vue du  
système  

d'exploitation 
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Gestion des frames et des pages 

●  Table des frames 

●  

●  

●  

Une case par frame  

Libre ou allouée 

Si allouée, information sur le processus et la page 

●  Table des pages 

●  

●  

Par processus 

Fait partie de son contexte 



Traduction des adresses logiques  
en adresses physiques : 

la table des pages 



Implémentation de la table des  
pages système 

●  Registre de table de pages 

●  

●  

●  

Table des pages en mémoire centrale  

Un registre contient l'adresse de la table 

Implique des accès mémoire lors de la traduction  
des adresses (lent) 

●  Mémoire cache dédiée 

●  TLB : Translation Look-aside Buffer 



TLB : mémoire associative 

●  Mémoire associative : recherche très rapide en parallèle 

●  

●  

Si le numéro de page est dans le TLB, on récupère le  
numéro de frame : très rapide car pas d'accès mémoire 

Sinon, récupérer le numéro dans la table des pages : lent  
car accès mémoire 

Page # Frame # 



Implémentation de la table des  
pages système avec TLB 



Fichier d'échange / Swap 

●  Que faire si le nombre de pages utilisés par tous les  
processus est supérieur au nombre de frames (taille  
de la mémoire physique) ? 

●  Les pages supplémentaires sont stockées sur le  
disque dans une partition spécifique ou un fichier :  
le swap 

●  Si #pages x 4 KO > taille(mémoire physique + swap),  
le système d'exploitation tue un processus qui  
consomme beaucoup de mémoire 



Fichier d'échange / Swap 

●  

●  

●  

Les processus ne sont chargés que  
partiellement 

Les pages non chargées sont stockées sur le  
disque 

Le chargement est paresseux (lazy) : une page  
est chargée lors du premier accès à une  
adresse contenue dans la page 



Fichier d'échange / Swap 

●  Référence de page 

●  

●  

●  

Invalide 

Page en mémoire : 
on continue l'exécution 

Page sur disque :  
défaut de page  
(page fault) 

– 

– 

On charge la page en  
mémoire 

Si pas de place,  
remplacement de page 



Bit de validité 

●  

●  

Comment déterminer si la page est en mémoire  
ou sur disque ? 

On rajoute un bit de validité dans la table des  
pages 

●  

●  

Si le bit de validité est à 1, la page est en  
mémoire à l'emplacement de la frame 

Si le bit de validité est à 0, la page est sur le  
disque : déclenchement d'un défaut de page 



Bit de validité 



Gestion des défauts de page 



Gestion des défauts de page 

●  Algorithme de préchargement 

●  

●  

●  

Quelles sont les pages à charger au lancement du processus ?  

Cas extrême : aucune 

Pagination à la demande pure 

●  Algorithme de remplacement 

●  Si il n'y a pas de frame libre, laquelle des pages décharger ? 

●  Algorithme de répartition des frames entre processus 

●  Combien de pages un processus a le droit de charger ? 



Remplacement de page 



Bit modifié (dirty) 

●  En plus du bit de validité, la table des pages  
comprend aussi un bit modifié 

●  Si la page a été modifié, le bit est à 1, on doit  
ré-écrire la page sur disque 

●  Si la page n'a pas été modifié, le bit est à 0, ce  
n'est pas la peine de ré-écrire la page sur  
disque 



Algorithmes de remplacement 

●  Comment choisir la page victime ? 

●  But : minimiser le nombre de défauts de page 

●  Algorithmes proposés 

●  

●  

●  

●  

●  

Random 

FIFO (first in first out)  

FIF (furthest in future) 

LRU (least recently used)  

Clock 



Remplacement FIFO 

●  

●  

●  

FIFO : first in first out 

Pages déchargées suivant l'ordre d'arrivée  

Gestion simple : une file d'attente FIFO 

Pages adressées : 

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 

 

Contenu des 3 frames : 

f1 7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7 

f2 0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0 

f3 1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1 

15 défauts de page 



Remplacement FIF 

●  

●  

●  

FIF : furtherst in future 

Remplacer la page qui sera accédée le plus tard  

Optimal mais nécessite de connaître le futur ! 

Pages adressées : 

3 0 3 2 1 2 0 1 7 0 1 7 0 1 2 0 3 0 4 2 

 

Mémoire de 3 blocs : 

b1 7 7 7 2 2 2 2 2 7 

b2 0 0 0 0 4 0 0 0 

b3 1 1 3 3 3 1 1 

9 défauts de page 



Remplacement LRU 

●  

●  

●  Utilisé, considéré performant, implémentation coûteuse 

LRU : Least Recently Used 

Remplacer la page non utilisée depuis le plus longtemps 

Pages adressées : 

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 

 

Mémoire de 3 blocs : 

b1 7 7 7 2 2 2 4 4 4 0 1 1 1 

b2 0 0 0 0 0 0 0 3 3 3 0 0 

b3 1 1 1 3 3 2 2 2 2 2 7 

12 défauts de page 



Remplacement Clock 

●  Ou algorithme de la deuxième chance 

●  Bit de référence 

●  

●  

Initialement page non utilisée : bit = 0  

Utilisation de la page : bit = 1 

●  Deuxième chance 

●  

●  

●  

Liste circulaire FIFO 

Si bit == 0, remplacement 

Si bit == 1, bit ← 0, vers page suivante 

●  Approximation de LRU moins coûteux à implémenter 



Remplacement Clock 



Classement des algorithmes  
de remplacement de pages 

●  

●  

●  

●  

●  

FIF  

LRU 

Clock  

FIFO 

Random 

●  Dépend des programmes 



Répartition des frames  
entre les processus 

●  Comment partager les frames entre les  
processus ? 

●  Égalité entre processus 

●  avantages / inconvénients ? 

●  Variations dynamiques 



Gestion globale ou locale des frames 

●  Gestion globale 

●  

●  

Quand une nouvelle frame est demandée par un  
processus, la frame allouée peut appartenir à un autre  
processus 

Variation dynamique du nombre de frames par  
processus 

●  Gestion locale 

●  

●  

Quand une page doit être déchargée, ne sont  
considérées que les frames allouées au processus 

Le nombre de frames par processus reste constant 



Problème du remplacement global 

●  Considérons la situation suivante 

●  

●  

●  

●  

●  

Un processus s'exécute et essaye d'accéder à des pages non chargées 

Le chargement des pages implique des E/S disque, le processus est en  
attente et peut relâcher le processeur 

Les autres processus n'ont pas assez de mémoire, ils génèrent aussi  
des défauts de page 

Le processeur est inoccupé et aucun processus en mémoire n'est prêt,  
on va essayer de charger de nouveaux processus prêts 

L'utilisation du processeur diminue, augmentation du nombre de  
processus en exécution 

●  Les processus passent plus de temps à charger des pages qu'à calculer :  
crash du système (trashing) 



Remplacement local 

●  

●  

Comment décider du nombre de frames par processus ?  

Notion d'ensemble de travail (working set) 

●  Ensemble des pages accédées dans le dernier intervalle de temps 

●  Algorithme du working set 

●  

●  

si la somme des WS de tous les processus est supérieure à la mémoire  
physique 

on suspend l'exécution d'un des processus et on décharge ses pages de la  
mémoire 



Working Set 



Table des pages hiérarchique 

●  Taille d'un table de page de 4KO en 64bit 

●  

●  

●  

Taille d'une page : 2^12  

Nombre de # de pages : 2^52 

Taille de la table : 2^52 * 4O → énorme ! 

●  Découper la table des pages en plusieurs  
niveaux 

0 63 

adresse 

12 11 

# page externe # page interne déplacement 

33 32 



Table des pages hierarchiques 



mmap 

●  void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t  
offset); 

●  mmap demande la projection en mémoire de length octets commençant à  
la position offset depuis un fichier indiqué par le descripteur fd 

●  remplace les E/S dans des fichiers par des opérations en  
mémoire : plus simple, plus rapide 

●  pagination à la demande : le fichier n'est pas intégralement chargé  
en mémoire 

●  permet de recouvrir les chargements par des calculs 



mmap 



NUMA et la politique first touch 

 

CPU 0 
 

CPU 1 

 

CPU 2 

 

CPU 3 

Noeud NUMA 3 Noeud NUMA 2 

Barrette mémoire 3-1 

Barrette mémoire 3-0 

Barrette mémoire 2-1 

Barrette mémoire 2-0 

Noeud NUMA 0 Noeud NUMA 1 

Barrette mémoire 0-1 Barrette mémoire 1-1 
 

Barrette mémoire 0-0 Barrette mémoire 1-0 

● Affinité mémoire : critique pour les  
performances 

● Bande passante 

● Latence 

 

● First touch 

● premier accès à la page 

● Polique de linux par défaut 

 
 

● Lorsqu'une page est accédée pour la  
première fois, on alloue une frame dans une  
barrette mémoire sur le même nœud NUMA  
que le thread qui a fait le défaut de page 

 
 

● On peut modifier cette politique avec, par  
exemple, la libnuma 

● numactl --interleave 



Mémoire virtuelle : conclusion 

●  4 endroits où l'OS intervient 

1.Création de processus 

– décider de la taille de la table 

– créer la table des pages 

2.Exécution de processus 

– remise à zéro du TLB 

3.Défaut de page 

– déterminer l'adresse virtuelle qui fait défaut 

– swap entre page de remplacement et page demandée 

4.Terminaison 

– libérer la table des pages, les pages en mémoire 



Allocation mémoire en espace 

utilisateur 

Issue de What Every Programmer 

Should Know About Memory de Ulrich 

Drepper 

http://futuretech.blinkenlights.nl/misc/c

pumemory.pdf 

 

http://futuretech.blinkenlights.nl/misc/cpumemory.pdf
http://futuretech.blinkenlights.nl/misc/cpumemory.pdf
http://futuretech.blinkenlights.nl/misc/cpumemory.pdf


Fonctionnement de malloc/free: 

Linux sans arena 

Approche centralisée 
Verrou en entrée de fonction 
Pas de distinction entre threads 
Pas de notion de NUMA 
First touch 
Pas de lien avec l’ordonnanceur 
 



Fonctionnement de malloc/free: 

Linux sans arena 



Fonctionnement de malloc/free: 

Linux avec arena 



Fonctionnement de malloc/free: 

BSD 

Approche hiérarchique 
Notion de thread 
Verrous distribués 
Pas de notion de NUMA 
Pas de lien avec l’ordonnanceur 



Fonctionnement de malloc/free: 

BSD 



Fonctionnement de malloc/free: 

BSD 



Fonctionnement de malloc/free: 

BSD 



Fonctionnement de malloc/free: 

BSD 



Fonctionnement de malloc/free 

Peu optimisé pour le contexte multithread 
Support Linux des threads très limité (thread safe 
uniquement) 
Non lié à l’ordonnanceur (migration de pages) 
Pas de support OpenMP 

Pas de problème en MPI  
Vision séquentielle 
Pas de migration 
Localité intrinsèque au modèle 



Allocation mémoire en contexte 

HPC 

Issue des travaux de thèse de 

Sébastien Valat 

https://tel.archives-ouvertes.fr/tel-

01253537/document 

 

https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document
https://tel.archives-ouvertes.fr/tel-01253537/document


Memory Allocation in User 

Space 

User Space 
Reduce the number of requests to the OS 

Drawbacks 
Inefficient NUMA support 

Data are allocated without NUMA knowledge 
Inefficient multithread application support 

Contention issue if threads target the same memory area 
 



Data Locality in multithreaded 

context 

Data locality management with thread pools 
Thread pools handle local management of allocations 

List of free blocs (coming from macro-blocs splitting) 
First level for algorithms (decision, splitting, fusion) 

Exchange with Memory source via macro-blocs (> 2MB) 
Ensure local memory accesses 

Avoid false sharing 
Easy when threads are bound 
Enable thread migration and keep data locality 



Data Locality in multithreaded 

context 

Drawbacks 
Directly handle only allocation < 1 MB 

Huge segment allocation are directly transferred to Memory Source 
Multiple threads with huge segment allocation will cause contention of Memory Source 
 

Solution implemented in MPC allocator: 
Do not tackle directly the Global Pool 

Levels of NUMA pools to avoid contention and NUMA effects with huge segments 



Data Locality in multithreaded 

context 

Keep data locality 
Efficient NUMA support 
Efficient highly multithread application support 
How to handle thread migration 

Link between thread scheduler and memory allocator 
Next touch policy 

Allow to handle concurrency more precisely on each NUMA level 
Allow page “recycling” between threads in the same NUMA level 



Huge segments issues 

Huge segment allocations still go through the 

OS 
Performance loss due to system calls 
For sizes > 1MB, allocation cost is driven by page-faulting 

MPC solution 
The memory source is an allocator by itself 

It keeps track of free macro-blocs for future reuse 
If the segment is not too large 
If the total amount of memory used for this macro-blocs cache is not tool large 

Possibility to fuse adjacent macro-blocs to provide greater segments if necessary 
Use mremap to resize segments if no matching segment is available 

Drawbacks 
Greater latency when the system call is still necessary 

Set up of macro-blocs buffers for each NUMA Pool to avoid system calls 
Increase memory consumption 

Possibility to adjust dynamically the amount of memory available for macro-blocs 
caches 

 
 



AMR Code + MPC on Dual-

Westmere (2*6 cores) 
Standard 4K pages 

 

 

 

 
 
Transparent Huge Pages  

Allocator Kernel Total (s) Sys. (s) Mem. (GB) 

MPC-NUMA Std. 135.14 1.79 4.3 

MPC-Lowmem Std. 161.58 15.97 2.0 

Jemalloc Std. 143.05 14.53 1.9 

Allocator Kernel Total (s) Sys. (s) Mem. (GB) 

MPC-NUMA Std. 137.89 1.86 6.2 

MPC-Lowmem Std. 196.51 28.24 3.9 

Jemalloc Std. 144.72 14.66 2.5 



AMR Code + MPC on 

Nehalem-EX (128: 4*4*8 cores) 



Memory allocation 

Memory Semantic 
Malloc only modify virtual memory space 
Requests via mmap or brk system calls 
 

Lazy Memory Allocation: Page Fault 
Physical pages are then provided upon a first touch policy via a page fault 
Allocation cost is not limited to malloc 
Cache usage is linked to physical pages allocation 
 

Reset memory pages 
Security reason 
Before providing page to the application 
In kernel space 
 



Page fault cost 



Page zeroing 

Kernel Space 
40% of page fault execution time is due to zero-page. 
Zero-page is useless from the application point of view. 
Reuse dirty pages within the same process to avoid page zeroing. 
Kernel patch using an extension to the mmap system call. 

24 SEPTEMBRE 2017 

User space 

Kernel space 
Free pages Kernel code 

Process 0 Process 1 

Local Pool 

Process 2 

Local Pool 

Process 3 

Local Pool 

mmap(…MAP_ANON…) mmap(…MAP_ANON|MAP_PAGE_REUSE…) 



Page fault performance results 

(1/3) 



Page fault performance results 

(2/3) 



Page fault performance results 

(3/3) 



MPC on Dual-Westmere (2*6 

cores) 
Kernel patch and standard 4K pages 

 

 

 

 

 
Kernel patch and Transparent Huge Pages  

Allocator Kernel Total (s) Sys. (s) Mem. (GB) 

MPC-NUMA Std. 135.14 1.79 4.3 

MPC-Lowmem Std. 161.58 15.97 2.0 

MPC-Lowmem Patched 157.62 10.60 2.0 

Jemalloc Std. 143.05 14.53 1.9 

Jemalloc Patched 140.65 9.32 3.2 

Allocator Kernel Total (s) Sys. (s) Mem. (GB) 

MPC-NUMA Std. 137.89 1.86 6.2 

MPC-Lowmem Std. 196.51 28.24 3.9 

MPC-Lowmem Patched 138.77 2.90 3.8 

Jemalloc Std. 144.72 14.66 2.5 

Jemalloc Patched 138.47 6.40 3.2 



Results on Dual-Westmere (2*6 

cores) 



Physical page allocation 

Linux 
Random page distribution 
 

Linux Transparent Huge Pages 
Random page distribution 
Huge pages 
 

OpenSolaris 
Page coloring 
Hash on virtual page addresses 
Without PID 
 

FreeBSD 
Page coloring 
Hash on virtual page addresses 
Without PID 
Superpages  

 

 



Physical page allocation 

Experimental setup 
Processor Bi Intel Xeon-E5502 (quad core Nehalem) 
Frequency 2.27 GHz 
Cache L3 8 MB 
Cache L2 256 KB 
Cache L1 32 KB 
Memory 24 GB 
 

Software stack 
GCC 4.4.1 
Identical software stack 
Identical compilation options 
 

Native execution 
 



Cache usage 



Impact of page allocation policy 

on benchmarks  



Impact of page allocation policy 

on application 



Conclusion 

Page zeroing 
Kernel-space patch in Linux 2.6.32 and 2.6.36 
Performance improvements  

up to 45% on sequential page faults 
up to 66% for 12 threads 

Limitation for standard usage (outside HPC) 
No support for SWAP 
Need pool cleaning method 

 

Physical pages allocation 
Huge impact on execution time 

Up to 51% performance improvement and 91% performances decrease 
POC: kernel module with contiguous physical pages allocation to improve cache 
usage 
 
 

 

 


